Preliminary 2010 Microcystin Bioaccumulation Results for Klamath River Salmonids (Updated 4-7-2011).

Prepared By

Jacob Kann, Ph.D. and Lisa Bowater Aquatic Ecosystem Sciences LLC 295 East Main St., Suite 7 Ashland, OR97520

and

Grant Johnson and Crystal Bowman Karuk Tribe Department of Natural Resources

Prepared For

Karuk Tribe Department of Natural Resources PO Box 282 Orleans, CA95556

INTRODUCTION

Copco and Iron Gate Reservoirs (the lowermost projects of PacifiCorp's Klamath Hydropower Project-- KHP) experienced extensive blooms of toxigenic *Microcystis aeruginosa* (MSAE) from 2004-2009 (Kann and Corum 2009; 2010; Jacoby and Kann 2007). These blooms have been associated with high levels of the cyanotoxin microcystin, a potent hepatotoxin capable of causing chronic liver damage and acting as a tumor promoter (Carmichael 1995; Chorus et al. 1999; Chorus 2001).

The results of the 2005-2009 sampling program demonstrated widespread and abundant seasonal blooms of toxigenic MSAE in Copco and Iron Gate reservoirs and in the Klamath River downstream. These yearly bloom events consistently exceed World Health Organization (WHO 1999) and California State Water Resources Control Board (SWRCB 2010) public health threshold levels for both MSAE cell density and microcystin toxin by 10 to over 1000 times. The blooms vary in duration and severity in the free flowing-section of the River but have generally been present at some level during the August through October period (Kann and Corum 2009; Fetcho 2009).

Due to the overlap in timing of the toxic algal blooms and run-timing of salmonids that serve as a food source, the potential for bioaccumulation of microcystins exists both as a a public health concern and as a contributor to fish stress and disease. For example, the Yurok Tribe fishes for fall Chinook starting in August, and fall Chinook reach the Karuk fishery in September. Fall steelhead enter the Klamath River in late summer; are in the mid-Klamath River by September or October, and reach Iron Gate hatchery by November. Salmonids are also caught and consumed by recreational fishermen and are sold in the Yurok commercial fishery.

Initial field sampling of salmonid fish tissue for public health was conducted by the Yurok Tribe in 2005, when a small number of fish livers and fillets were collected from the Klamath River between mid-September and early October (Fetcho 2006). Of the 5 Chinook livers, 4 Chinook fillets, 2 steelhead livers, and 2 steelhead fillets sampled, a trace amount of microcystin was detected in one steelhead liver, and 0.54 μ g/g microcystin was found in the other steelhead liver (Fetcho 2006). In addition, bioaccumulation studies undertaken in 2007 showed accumulation of microcystin toxin in muscle and/or liver tissues of yellow perch, Irongate hatchery salmon, and freshwater mussels (Mekebri et al. 2009; Kann 2008; Kanz 2008). Microcystin levels in many of these samples exceeded public health threshold values for safe consumption (Kann 2008; OEHHA 2008).

Although other studies of Klamath River salmon and steelhead in 2007, and yellow perch in 2008 and 2009, did not show microcystin bioaccumulation in tissues (e.g., CH2MHILL 2009; Prendergast and Foster 2010), histological examination of liver tissues determined that lesions were present in liver tissue from both salmonid species (CH2M HILL 2009). Substantial bioaccumulation continued to be shown in freshwater mussels throughout the Klamath River below Irongate Dam in 2009 (Kann et al. 2010).

Given previous results showing the presence of microcystin in salmon and steelhead livers, and that in the mainstem of the Klamath River adult salmonids are an important subsistence food for Tribal people, additional salmonid sampling for microcystin bioaccumulation was conducted in

2010 by the Karuk Tribe. Although histological results have not yet been received from the laboratory, the following memo provides results for the presence of microcystin in salmonid tissues during the fall of 2010. The memo will be updated when completed histology results are received.

METHODS

Klamath River fish samples were collected at five locations during September through November; Orleans, Ishi Pishi Falls, Weitchpec, Happy Camp, and Irongate hatchery (Figure 1). Fish were collected using hook and line at Weitchpec, Orleans, and Happy Camp and by traditional dip net at Ishi Pishi Falls. Fish from Irongate hatchery were collected after being spawned. Samples for *Microcystis* and microcystin toxin were also collected at a series of stations as part of the Karuk Tribe's public health monitoring program (Figure 2). In September, 10 livers and fillets were collected from fall steelhead and 7 livers and fillets were collected from fall Chinook (Figure 3). In October, 15 livers and fillets were collected from Steelhead, and 7 livers and fillets from Chinook. In November, 6 liver and fillets were collected from Chinook and 3 livers and 2 fillets from Coho. Fillet and liver samples were sent to the California Department of Fish and Game (CDFG) lab for microcystin analysis and various organs were sent to the University of California, Davis for histological examination.

CDFG Protocol

Samples of five fish were collected per sample period. Fish tissue and liver samples consisted of 5-10 grams of tissue and 5-10 grams of liver. Samples were placed in aluminum foil and Ziploc bags and then frozen. The samples were shipped with ice overnight to Dr. Abdou Mekebri at the Fish and Wildlife Water Pollution Control Lab (WPCL) in Rancho Cordova, CA for microcystin analysis by LCMS/MS (Mekebri et al. 2009). Chain of Custody forms are shown in Appendix I. Two of the September Chinook liver samples were split at the lab for quality assurance purposes and are labeled with "Dup" following the WPCL Lab number (Appendix II).

Histology Protocol

Fish samples were refrigerated for a maximum of three days. Photos were taken of whole fish and organs; ocular examination was performed for anomalies in tissues and gills to look for *Columnaris*. Various tissue types (e.g., gills, heart, liver, etc.) were grouped into separate containers. These containers were filled with a 10% formalin solution using a minimum1:10 ratio by volume of tissues to formalin to ensure preservation of tissues.

Organ removal occurred as follows: fish guts were removed whole (GI tract, spleen, heart); gill arches removed (at least 1 side); liver removed (sampled at least 2 sections from 2 different locations assuring not to cut into the gallbladder). The fillet and kidney were removed as an x-section cut perpendicular to the backbone. This piece of kidney, backbone, and muscle was no more than 1cm thick to insure saturation of preservative. The tissue samples were rinsed with saline solution to minimize superficial blood. The presence of blood on tissue samples will darken upon exposure to formalin reducing the quality of slide mounts. The head was cut off (after the gill arches were removed) and shipped fresh for lab removal of the brain for September

samples only. Samples were shipped weekly on ice to Melissa A. Miller, DVM, PhD at the Marine Wildlife Veterinary Care and Research Center Department of Fish and Game and University of California, Davis in Santa Cruz, CA. Histological results are pending and are not included here.

Figure 1. 2010 Fish sampling locations: Clockwise from top left; Iron Gate hatchery, Weitchpec, Ishi Pishi Falls, and Orleans (Happy Camp location not shown).

Figure 2. Klamath River fish and *Microcystis* sampling locations, 2010.

Figure 3. Example of 2010 Fish samples: clockwise from top left: Chinook from Ishi Pishi- IP092810_1C, Chinook liver from Ishi Pishi- IP092910_1C_Liver, Steelhead from Orleans- OR092310_1S and Chinook from Ishi Pishi- IP092910_1C.

RESULTS/DISCUSSION

Results from salmonid tissue samples collected by the Karuk Tribe in September, 2010 showed that 3 of 7 Chinook livers collected below Happy Camp at Ishi Pishi Falls had detectable levels of microcystin-RR (Table 1; Figure 4). Microcystin was not detected in any of the other September fish samples. Samples collected on the 14^{th} and 15^{th} of October showed that 1 of 7 Chinook livers had a high level of microcystin-RR (121 ppb), and 1 of 15 steelhead livers had a high level of microcystin-RR (121 ppb), and 1 of 15 steelhead livers had a high level of microcystin-RR (121 ppb), and 1 of 15 steelhead livers had a high level of microcystin was not detected in fish tissue samples during any of the other October or November samples. Aside from microcystin, none of the other measured algal toxins were detected in any of the Klamath River fish samples (Table 1; i.e., anatoxin-a, domoic acid, or okadaic acid). Duplicate samples analyzed on two of the September fish showed good agreement (Table 1), and internal lab QA recoveries were generally 100% ±20%, although a few were closer to 75% (Figure 5; Appendix II).

During the period the Chinook were collected, the 2010 longitudinal microcystin (total microcystin as determined by ELISA) and *Microcystis* public health sampling data showed that ambient levels of both *Microcystis* cells and microcystin toxin increased in the Klamath River during mid-September, exceeding public heath guideline values at nearly all stations (Figures 6 and 7). Although microcystin values declined somewhat during the third week in September, they then rebounded in late September and into early October (Figures 6 and 7). These results indicate that microcystin was being transported downstream to areas where Chinook and steelhead were migrating upstream, and that fish collected during the September and October efforts were likely exposed to microcystin either prior to or during the collection period. Microcystin levels then declined to levels that were below detection during the November fish sampling period.

In addition to total microcystin as determined by ELISA during the course of regular public health sampling (e.g., Figure 7), samples were also periodically collected to specifically determine the presence of various microcystin congeners in Klamath River water samples (Table 2). These data show only two congeners to be detected, microcystin-LR early in the season at station IB, and microcystin-LA during August through October at various stations (Figure 8).

These data indicate that congeners bioaccumulated in Klamath River salmonids do not match the ambient data with respect to detected microcystin congeners or variants. For example, of the five fish showing positive bioaccumulation, four showed the presence of microcystin-RR, and one microcystin-LR. Moreover, even though microcystin–LR was detected in ambient water earlier in the season, only –LA was detected during the period bracketing the October 15th steelhead that showed 152 ppb of microcystin –LR. The reason for this difference between ambient and bioaccumulated microcystin is unclear. However, a similar trend was noted in Klamath River freshwater mussels (Kann et al. 2010). A potential explanation is differential uptake, whereby even though the concentrations of –RR and –LR were below detection in ambient water, they could still have been present at low levels and were then differentially accumulated through the bioaccumulation process.

Figure 4. Microcystin concentration in Klamath River Salmonid Liver Samples, 2010 (showing occurrence of positive hits only—see data in Table 1).

 Table 1. 2010 Fish and Wildlife Water Pollution Control Lab Toxin Results for microcystin bioaccumulation in Klamath River Salmonids.

2010 Adu	ılt Salmonic	l Toxin	Estimated MDL (ppb)	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	5.00	2.00	1.00
	Results		Reporting Limit (ppb)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	10.0	5.00	2.00
WPCL Lab#	Sample Identification	Date Collected	Matrix (Fresh Weight)	MC-RR (ppb)	MC- Desmethyl- RR* (ppb)	MC-LR (ppb)	MC- Desmethyl- LR (ppb)	MC-YR (ppb)	MC-LA (ppb)	MC-LW (ppb)	MC-LF (ppb)	MC-LY (ppb)	Anatoxin A (ppb)	Domoic acid (ppb)	Okadaic acid (ppb)
L-620-10-1	OR092310-1S	9/23/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-620-10-2	OR092310-1S	9/23/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-620-10-3	OR092310-2S	9/23/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-620-10-4	OR092310-2S	9/23/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-620-10-5	OR092610-3S	9/26/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-620-10-6	OR092610-3S	9/26/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-620-10-7	OR092610-4S	9/26/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-620-10-8	OR092610-4S	9/26/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-620-10-9	OR092610-5S	9/26/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-620-10-10	OR092610-5S	9/26/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-620-10-13	IP092710-2C	9/27/2010	fish liver	3.80	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-620-10-13Dup	IP092710-2C	9/27/2010	fish liver	2.93	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-620-10-14	IP092710-2C 9/27/2010 IP092710-3C 9/27/2010		fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-620-10-15	IP092710-2C 9/27/2010 IP092710-3C 9/27/2010 IP092710-3C 9/27/2010 IP092710-3C 9/27/2010		fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-620-10-16	IP092710-3C 9/27/2010 IP092710-3C 9/27/2010 IP092710-3C 9/27/2010		fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-620-10-11	IP092710-3C 9/27/2010 IP092810-1C 9/28/2010		fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-620-10-12	IP092810-1C	9/28/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-641-10-1	IP093010-4C	9/30/2010	fish liver	2.71	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-641-10-2	IP093010-4C	9/30/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-641-10-3	IP092910-1C	9/30/2010	fish liver	2.17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-641-10-3Dup	IP092910-1C	9/30/2010	fish liver	2.10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-641-10-4	IP092910-1C	9/30/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-641-10-5	WE092910-5S	9/30/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-641-10-6	WE092910-5S	9/30/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-641-10-7	IP093010-3C	9/30/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-641-10-8	IP093010-3C	9/30/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-641-10-9	IP092910-2C	9/30/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-641-10-10	IP092910-2C	9/30/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-641-10-11	WE092910-1S	9/30/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-641-10-12	WE092910-1S	9/30/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-641-10-13	WE092910-1S 9/30/2010 WE092910-2S 9/30/2010		fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-641-10-14	WE092910-2S 9/30/2010 WE092910-2S 9/30/2010		fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-641-10-15	WE092910-23 9/30/2010 WE092910-4S 9/30/2010		fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-641-10-16	WE092910-4S	9/30/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-641-10-17	WE092910-3S	9/30/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-641-10-18	WE092910-3S	9/30/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-1	HC101410-8C	10/14/2010	fish liver	121.20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-2	HC101410-8C	10/14/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

WPCL Lob#	Sample	Date	Matrix	MC-RR	MC-	MC-LR	MC-	MC-YR	MC-LA	MC-LW	MC-LF	MC-LY	Anatoxin	Domoic	Okadaic
	Identification	Collected	(Fresh Weight)	(ppb)	RR* (ppb)	(ppb)	LR (ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	A (ppb)	acid (ppb)	(ppb)
L-678-10-3	HC101410-11S	10/14/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-4	HC101410-11S	10/14/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-5	HC101410-12S	10/14/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-6	HC101410-125	10/14/2010	fish liver												
L-678-10-7	HC101410-13S	10/14/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-9	HC101410-14S	10/14/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-10	HC101410-14S	10/14/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-11	HC101410-15S	10/14/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-12	HC101410-15S	10/14/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-13	WE101510-16S	10/15/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-14	WE101510-16S	10/15/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-15	WE101510-175	10/15/2010	fish fillet			152.40 ND									
L-678-10-17	WE101510-175	10/15/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-18	WE101510-18S	10/15/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-19	WE101510-19S	10/15/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-20	WE101510-19S	10/15/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-21	WE101510-20S	10/15/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-22	WE101510-20S	10/15/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-23	OR101710-21S	10/17/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-24	OR101710-21S	10/17/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-25	OR101710-225	10/17/2010	fish liver		ND	ND	ND			ND				ND	ND
L-078-10-20	OR101710-223	10/17/2010	fish fillet												
L-678-10-28	OR101710-23S	10/17/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-29	OR101710-24S	10/17/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-30	OR101710-24S	10/17/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-31	OR101710-25S	10/17/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-32	OR101710-25S	10/17/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-33	IG101810-9C	10/18/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-34	IG101810-9C	10/18/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-35	IG101810-10C	10/18/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-36	IG101810-10C	10/18/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND
L-678-10-38	IG101810-11C	10/18/2010	fish liver		ND		ND								
L-678-10-39	IG101810-12C	10/18/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-40	IG101810-12C	10/18/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-41	IG101810-13C	10/18/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-42	IG101810-13C	10/18/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-43	IG101810-14C	10/18/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-678-10-44	IG101810-14C	10/18/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-711-10-1	IG110110-15C	11/1/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-/11-10-2	IG110110-15C	11/1/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-711-10-3	IG110110-16C	11/1/2010	fish fillet												
L-711-10-4	IG110110-17C	11/1/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-711-10-6	IG110110-17C	11/1/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-711-10-7	IG110110-18C	11/1/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-711-10-8	IG110110-18C	11/1/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-711-10-9	IG110110-19C	11/1/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-711-10-10	IG110110-19C	11/1/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-711-10-11	IG110110-20C	11/1/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-711-10-12	IG110110-20C	11/1/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-742-10-1	IG112910-1CO	11/29/2010	fish fillet	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L-742-10-2	IG112910-100	11/29/2010	fish fillet				ND						ND		ND
L-142-10-3	IG112910-200	11/29/2010	fish liver			ND		ND			ND				
1-742-10-4	IG112910-3CO	11/29/2010	fish liver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
* Desmethvl-RR d	uantified as parent	analog compo	und.												
**Sample ID end	ng in 'S' denotes S	Steelhead, Sa	mple ID ending	in 'C' dei	notes Chinor	ok and S	ample ID en	ding in 'C	CO' denot	es Coho).				

Figure 5. 2010 Fish and Wildlife Water Pollution Control Lab; Quality control analysis, percent recovery of spiked toxin in fish fillets (a), fish livers (b) and fillets and livers combined (c). Data plotted by date samples were analyzed; shown with mean and standard error bars.

Figure 6. *Microcystis aeruginosa* cell density (top panel) and microcystin toxin concentration (bottom panel) in Klamath River SG (surface grab near shoreline) water samples during 2010. Samples collected as part of the Karuk Tribes public health monitoring program; SWRCB/OEHHA limit line indicates the public health guideline value and the shaded bars indicate when fish samples with positive toxin results were taken.

Figure 7. *Microcystis aeruginosa* cell density (top panel) and microcystin toxin concentration (bottom panel) in Klamath River OC (near mid-channel) water samples during 2010. Samples collected as part of the Karuk Tribes public health monitoring program; SWRCB/OEHHA limit line indicates the public health guideline value and the shaded bars indicate when fish samples with positive toxin results were taken.

Table 2. 2010 Fish and Wildlife Water Pollution Control Lab Ambient Microcystin Toxin Results (site codes as above in Figure 1, with the addition of LE and LES which are the Lower Estuary and the Lower Estuary Surface as collected by the Yurok Tribe).

					MC-		MC-								
			Site		Desmeth		Desmeth						Anatoxin	Domoic	Okadaic
Sample ID	Matrix	Date	Name	MC-RR	yl-RR*	MC-LR	yl-LR	MC-YR	MC-LA	MC-LW	MC-LF	MC-LY	Α	acid	acid
SV060910-SG	Water	6/9/2010	SV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
IB062310-SG	Water	6/23/2010	IB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SV070810-SG	Water	7/8/2010	SV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
IG072110-SG	Water	7/21/2010	IG	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SV072110-SG	Water	7/21/2010	SV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
IB081110-SG	Water	8/11/2010	IB	ND	ND	0.0478	ND	ND	0.517	ND	ND	ND	ND	ND	ND
SV081110-OC	Water	8/11/2010	SV	ND	ND	ND	ND	ND	0.125	ND	ND	ND	ND	ND	ND
IB082510-SG	Water	8/25/2010	IB	ND	ND	0.467	ND	ND	1.82	ND	ND	ND	ND	ND	ND
SV090810-SG	Water	9/8/2010	SV	ND	ND	ND	ND	ND	2	ND	ND	ND	ND	ND	ND
SV090810-OC	Water	9/8/2010	SV	ND	ND	ND	ND	ND	1.95	ND	ND	ND	ND	ND	ND
WE090810-OC	Water	9/8/2010	WE						1.74						
LES090810-OC	Water	9/8/2010	LES						3.74						
BB092210-SG	Water	9/22/2010	BB	ND	ND	ND	ND	ND	2.58	ND	ND	ND	ND	ND	ND
SV092210-SG	Water	9/22/2010	SV	ND	ND	ND	ND	ND	1.8	ND	ND	ND	ND	ND	ND
LES092210-OC	Water	9/22/2010	LES						1.93						
HC100610-OC	Water	10/6/2010	HC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SV100610-SG	Water	10/6/2010	SV	ND	ND	ND	ND	ND	6.82	ND	ND	ND	ND	ND	ND
WE100610-OC	Water	10/6/2010	WE						2.24						
LES100610-OC	Water	10/6/2010	LES						3.26						
IG102010-OC	Water	10/20/2010	IG	ND	ND	ND	ND	ND	2.13	ND	ND	ND	ND	ND	ND
SV102010-SG	Water	10/20/2010	SV	ND	ND	ND	ND	ND	1.93	ND	ND	ND	ND	ND	ND

Because concentrations of microcystin-RR in the September Chinook livers were below public health guideline values (e.g. Kann 2008; OEHHA 2008) and livers are not typically consumed, those tested fish did not likely pose a public health concern with respect to consumption. They do, however, indicate that fish were exposed to microcystin, and that direct effects to fish health in terms of stress and/or disease are a possibility. The lack of consistent microcystin bioaccumulation among the sampled fish likely reflects variable exposure time due to spatial differences in toxin distribution, as well as temporal and spatial differences with respect to migration timing and habitat use

Although, as noted above, fish livers are not typically consumed, the level of microcystin-RR in the October Chinook and –LR in the October steelhead did exceed public health guideline values (e.g. OEHHA 2008; Ibelings and Chorus 2007). The State of California recommends that internal organs should be removed from fish exposed to *Microcystis* blooms and specifically that the viscera (e.g., liver, kidney, etc.) of the fish should not be eaten. This would be especially important given the demonstrated exceedance of specific public health guideline values for microcystin in liver tissue of salmonids from the Klamath River.

Aside from fish consumption issues with respect to public health, the positive detection of microcystin in Klamath River Chinook and steelhead may indicate an impact to the health of these fish in terms of stress and/or disease. For example, fish exposed to typical microcystin producing blooms may experience sublethal toxic effects such as liver damage (OEHHA/CEP 2009). In addition, laboratory and field studies from elsewhere have also demonstrated the toxic effects of microcystin on salmonids (Anderson et al. 1993, Tencalla et al. 1994; Bury et al. 1997, Landsberg 2002) and other fish (Smith et al. 2008). Based on these studies, and the documented presence of microcystin in the Klamath River and in Klamath River salmonid organs, the potential clearly exists for sublethal (e.g., stress and disease) effects on salmonids from exposure to algal toxins. Pending histology results will allow a further examination of this possibility.

REFERENCES

- Andersen RJ, Luu HA, Chen D.Z., Holmes CF, Kent ML, Le Blanc M, Taylor F.J.R., and DE Williams. 1993. Chemical and biological evidence links microcystins to salmon netpen liver disease. Toxicon 31(10):1315-1323.
- Bury N.R., McGeerJ.C., Eddy FB, and Codd GA. 1997. Liver damage in brown trout, Salmo trutta L., and rainbow trout, Oncorhynchus mykiss (Walbaum), following administration of the cyanobacterial hepatotoxin microcystin-LR via the dorsal aorta. Journal of Fish Diseases 20(3):209-215.
- CH2M HILL. 2009. Occurrence of microcystin in salmon and steelhead fish tissue in the Klamath River in 2007. Prepared by CH2M HILL, Inc. Prepared for PacifiCorp Energy. December 2009.
- Fetcho, K. 2006. Klamath River Blue-Green Algae Bloom Report, Water Year 2005. Yurok Tribe Environmental Program, Klamath, CA. http://www.yuroktribe.org/departments/ytep/documents/YurokBGAReport032106.pdf
- Jacoby, J.M., and J. Kann. 2007. The occurrence and response to toxic cyanobacteria in the Pacific Northwest, North America. Lake and Reserv. Manage. 23:123-143.
- Ibelings, B.W., and I. Chorus. 2007. Accumulation of cyanobacterial toxins in freshwater "seafood" and its consequences for public health: A review. Environ. Pollut. 150: 177-192.
- Kann J, Corum S, and Fetcho K. 2010. Microcystin Bioaccumulation in Klamath River Freshwater Mussel Tissue: 2009 Results. Prepared by Aquatic Ecosystem Sciences, LLC., the Karuk Tribe Natural Resources Department, and the Yurok Tribe Environmental Program:23 pp. + appendices. <http://www.klamathwaterquality.com/documents/2009_Klamath_River_FreshwaterMussel_%20Microcys tin_%20Bioaccumulation.pdf>
- Kann, J. 2008. Technical Memorandum: Microcystin Bioaccumulation in Klamath River Fish and Mussel Tissue: Preliminary 2007 Results. Aquatic Ecosystem Sciences, Ashland, OR.13 pp. + appendices.<http://www.klamathwaterquality.com/documents/2009/Kann_2008_Mussell_Bioaccumlation_ .pdf>
- Kann, J. and S. Corum. 2009. Toxigenic Microcystis aeruginosa bloom dynamics and cell density/chlorophyll a relationships with microcystin toxin in the Klamath River, 2005-2008 Prepared For: Karuk Tribe Department of Natural Resources, P.O. Box 282 Orleans, CA.
- Kanz, R. 2008. Final Report to the U.S. Environmental Protection Agency on Cyanotoxin Accumulation in Fish and Freshwater Mussels of the Klamath River. Water Quality Cooperative Agreement CP 96941301-2. State Water Resources Control Board.
- Landsberg J.H. 2002. The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science 10(2):113–390.
- Office of Environmental Health Hazard Assessment (OEHHA). 2008. Applying Recommendations by the World Health Organization to the issue of fish consumption from the Klamath River. Memorandum from OEHHA to NCWQCB, June 10, 2008.
- OEHHA and CEP. 2009. Microcystins: A brief overview of their toxicity and effects, with special reference to fish, Wildlife, and livestock. January, 2009. Prepared by: Integrated Risk Assessment Branch Office of Environmental Health Hazard Assessment California Environmental Protection. Prepared for: Department of Water Resources Agency.
- Prendergast, L. and K. Foster. 2010. Analysis of Microcystin in Fish in Copco and Iron Gate Reservoirs in 2009. Technical Memorandum, PacifiCorp, Portland Oregon.

- Smith J.L., Boyer GL, and Zimba PV. 2008. A review of cyanobacterial odorous and bioactive metabolites: Impacts and management alternatives in aquaculture. Aquaculture 280(1-4):5-20.
- SWRCB and OEHHA. 2010. Cyanobacteria in California Recreational Water Bodies Providing Voluntary Guidance about Harmful Algal Blooms, Their Monitoring, and Public Notification (July 2010 draft).Blue Green Algae Work Group of the State Water Resources Control Board (SWRCB),the California Department of Public Health (CDPH), and Office of Environmental Health and Hazard Assessment (OEHHA). http://www.cdph.ca.gov/healthinfo/environhealth/water/Pages/bluegreenalgae.aspx
- Tencalla, F.G., D.R. Dietrich, and C. Schlatter, 1994. Toxicity of Microcystis aeruginosa peptide toxin to yearling rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology. 30(3): p. 215-224
- WHO, 1999. Toxic Cyanobacteria in Water. A Guide to Public Health Consequences, Monitoring and Management. E &FN Spon, London.

•			L-	620-10)
Chain	of Custody f	for Klamath River Tissu	e Study		
Karuk DNR		39051 Hwy 96			
PHONE 530-469-3258 ·		Orleans, CA 95556			
CONTACT Grant Johnson		EMAIL cbowman@ka	aruk.us, gjoh	nson@karuk.	us
Collected By Grant Johns	m	SIGNATURE	-112-	>	
			V		
Sample ID Date Time	ID Lab	Sample Description	Microcystin ELISA	Microcystin LCMS/MS	Anatoxin
2 1 OR092310-15 09123 Filler	CDFG 11	Klamath (Seelhead)	2.5000.0000.0000.000	X	
3 2 02092310-25 09123				X	
5 3 02092610-35 09/26				×	
2 4 DECARCIO-45 1				*	
9 5 DE092610-55 09126	lis	er. Efilet (Steelnead) Klamath		×	
12 6 IROA2810-1C 09128	No. No.	er (filot ((unak)			
13 7 IROA2710-2C 09/27	والمراجع والمحاصر والمحاصر والمحاصر		are color estates are		Standard Bill Constanting State
15 8 IFOUTH & ALENDER	10	er E fillet ((umok)			Cr Warts
	En la same and			19-10-19-19-10-10-10-10-10-10-10-10-10-10-10-10-10-	
	<u></u>	<u>. Andres Angel</u>	recent and		
12			- 1.5.1.5.1.6207		S. S. S. S. S. S. S.
13	an a canar ta a sa		WALLST SAME SHARE	a da kana ng kana na kana	an na manana ang ang ang ang ang ang ang ang an
14					
Date Shipped:0912911	<u> </u>	Carrier/ Shipping #	5		
Date Received 9-30 Received by	10				\sim 1.
Notes liver & fille	t in sex	evate bags, Please	ceturn co	oleus à ice	
Ship to:			Send	Results To:	
For microcystin ELISA: Sample Custodian USEPA Region 9 Lab 1337 S. 46 th Street Building 201 Richmond, CA 94804 510-412-2389	For anatoxin Dr. Abdou M Fish and Wik 2005 Nimbus Rancho Cord (916) 358-43	a-a and microcystin LCMS/M lekebri dlife Water Pollution Control L is Road lova, CA 95670 96	S: Grant Karuk ab Dept o PO B Orlean (530)	Johnson c Tribe of Natural Reso lox 282 ns, CA 95556 469-3258	urces '
Chain of Custody Karuk Tribe Department of Natur	ral Resources		Р	age <u>}</u> of	

APPENDIX I: Chain of custodies for Klamath River Tissue Study, 2010.

PHONE CONTA Collecte	E 530-469-325 ACT Grant Joh	8	,•		•			
CONTA Collecte	ACT Grant Jol			*******	Orleans, CA 95556			
Collecte		nson			EMAIL cbowman@ka	ruk.us, gjohi	nson@karuk.	08
	ed By	unt (vilini	5	SIGNATURE)	Are		
						· //		
Sa	mple ID	Date	Time	Lab ID	Sample Description	Microcystin ELISA	Microcystin LCMS/MS	Anatóxi
1 14	2093010-40	09/30	-	Citra	Elamon River, Tissue		χ	
2 1	092910-1C							
3 w	E092910-5					and the second s		
4 72	093010-36							
5 12	092910-20	.]						
6 W	E09.2910-15	행성						
7 WF	E092910-25							
8 w	E092910-45							
9 WE	2092910-35	09/30	<u>,</u>	COFG	Klamath River, Tissue Filet & Liver		λ	
10								
11	Aurosofi Soota Statistica	diata di ka	6. 1805 /					
12								
13			- Mariana (Mariana) Mariana (Mariana)	3.000	May a substantia and and a state of		ali uzbili i turan	144

Ka	ruk DNR					3905	1 Hwy 96			
PH	ONE 530-469-325	58	-			Orlea	ans, CA 95556			
CÕ	NTACT Grant Jol	hnson				EMA	AIL cbowman@	karuk.us, gjol	unson@karuk	us
Col	lected By Gran	14. 7	Johns	201		SIG	NATURE	n M	9	
		Statistics.		34.4					(N, N)	
	Sample ID	Date	Time:	Lab ID		Sample	e Description	Microcystin ELISA	Microcystin LCMS/MS	Anatoxi
1	HC10410-8C	10/14		CORC	Fi	sh Tr	ssue, Klamedh		X	er a sport totale
2	HC101410-115	200	1954	a.	3	200		1.000	1.7	옷한것
3	HC101410-125				'					
4	HC101410-135					626				
5	HC101410-145			Π						
6	HC101410-158	10/14	19203		543	194		16-15 e ja		S. 65.
7	WEIDISID-16S	10/15								
8	WE101510-175	6.165						2490000	668 866C	
9	WE101510185	1								
10	WE101510-195									1.002
11	WEI01510-205	10/15		Π						
12	02-101710-215	10117		0. G	0.0			5.00 × 199		
13	02-101710-225	-1	-							
14	02-101710-233	10117		COFI	a Fist	n Tissu	R, Klaneth		X	
	Date Shipped: Date Received Received by	10 ·	21.10	. 09	10	Carrier/	Shipping #			_

Ship to:

For microcystin ELISA: Sample Custodian USEPA Region 9 Lab 1337 S. 46⁸ Street Building 201 Richmond, CA 94804 510-412-2389

Notes FritEN 30°=

For anatoxin-a and microcystin LCMS/MS: Dr. Abdou Mekebri Fish and Wildlife Water Pollution Control Lab

Fish and Wildlife Water Pollution Control Lab 2005 Nimbus Road Rancho Cordova, CA 95670 (916) 358-4396 Send Results To:

Grant Johnson Karuk Tribe Dept of Natural Resources PO Box 282 Orleans, CA 95556 (530) 469-3258

Chain of Custody Karuk Tribe Department of Natural Resources

.

Page 1 of 2

Ka	ruk DNR				3	9051 Hwy 96			
PHO	ONE 530-469-325	8				Orleans, CA 95556	,		
CO	NTACT Grant Joh	nson			E	MAIL cbowman	@karuk.us, gjol	inson@karuk.	us
Col	lected By Gran	t Joh	inson	-	S	IGNATURE	3r#		
	Sample ID.	Date	Time	Lab	Sa	mple Description	Microcystin ELISA	Microcystin LCMS/MS	Anatoxi
1	GRIDITIO 245	10(17	:	ang	FISHT	issue, Klamat		\mathcal{X}	19400943
2	02101710-258	INT	() ()	100	98. M		S 1933	4.80	
3	J610130-9C	10/18		1					
4	JG 101810-10C	4		1			12 53 253		1. 55
5	TG101810HIC								
6	TGIOISIO-DC						k alekte		
7	IG 101810 BC					1			
8	JG101810-14C	10/18		COFG	FSHT	esua, Kamatu	<u></u>	\times	
10			623	6833					Roder Roder
11			1			-			
12			1.1.1.1					5.36 3.21	17.00
13									
14				9 . S.	S. Mala		80 663 86 30		

Notes _____ Ship to:

, ». [°].

For microcystin ELISA: Sample Custodian USEPA Region 9 Lab 1337 S. 46th Street Building 201 Richmond, CA 94804 510-412-2389

Received by Seof

For anatoxin-a and microcystin LCMS/MS: Dr. Abdou Mekebri

Fish and Wildlife Water Pollution Control Lab 2005 Nimbus Road Rancho Cordova, CA 95670 (916) 358-4396

Send Results To:

Grant Johnson Karuk Tribe Dept of Natural Resources PO Box 282 Orleans, CA 95556 (530) 469-3258

Chain of Custody Karuk Tribe Department of Natural Resources

Hamil

Froz A 30"

Page 2 of 2

Ka	ruk DNR				39051 Hwy 96			
PH	ONE 530-469-325	58			Orleans, CA 95556		A	
co	NTACT Grant Jol	hnson			EMAIL cbowman@k	aruk.us, gjoh	nson@karuk.	us
Co	lected By Grav	4 5	ohrso	~ _	SIGNATURE	-n-		
	Sample ID	Date	Time	Lab	Sample Description	Microcystin	Microcystin,	Anatoxin
1	IG10110-15C	11/01	20127403	(DFG	Tissue, Liver 27,164	Statistical Statistica	\overline{X}	
2	IGNOTIO-UC	T.		1		ethe (and	X	1,2433
3	IG110110-17C	17					x	
4	TGHONO-USC						×	
5	IGIIONO-19C			1			X	
6 7	I.PHO110-30C	1101		ODFG.	rissue, Liver (Fillot		X	
8				<u> 19</u> 35				
10		1968a		24623		1316376		
11							1	
12 13				1974			NA STAN	
14		146		9.35				

Carrier/ Shipping #

ante

Ship to:

Notes

Date Received Received by

For microcystin ELISA: Sample Custodian USEPA Region 9 Lab 1337 S. 46th Street Building 201 Richmond, CA 94804 510-412-2389

For anatoxin-a and microcystin LCMS/MS: Dr. Abdou Mekebri Fish and Wildlife Water Pollution Control Lab 2005 Nimbus Road Rancho Cordova, CA 95670 (916) 358-4396

Send Results To:

Grant Johnson Karuk Tribe Dept of Natural Resources PO Box 282 Orleans, CA 95556 (530) 469-3258

Chain of Custody Karuk Tribe Department of Natural Resources

7.20

Page _ of _

.

Ka	ruk DNR				39051 Hwy 96			
PH	ONE 530-469-325	58			Orleans, CA 95556			
co	NTACT Grant Joh	hnson			EMAIL cbowman@	karuk.us, gjoh	nson@karuk.	us
Co	llected By Grav	1+)	ohn so	~	SIGNATURE	AL		
	Sample ID	Date	Time	Lab ID	Sample Description	Microcystin ELISA	Microcystin LCMS/MS	Anatoxin
1	IG112910-100	1/29		COFG	Fish tissue, Fillet	100000 000 000 000 000 000 000 000 000	Х	048000000
2	IG112910-100	1		100	Fish Tissue, Liver	0.2534	894.200	
3	56112910-200	1			FishTissue, Fillet			
4	5612910-200			12	Fishtisaue, Liver			
5	IG112910-300	11/29		CITEG	Fish Tissue, Liver		\times	
7							ki ka	방법해
8			9-67.K	-555	21 : 20 · 20 · 20 · 20 · 20 · 20 · 20 · 20	1233028	46-000 0 49	9482946
9	<u>1911 - S. C. S. S.</u>	19.1669/202	9800.02	17 68D	<u>2010/02/2012/2012/2012/02/2012</u>	a kabanya	8999 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	
10	0000000	-		8089		. 50.03		19 - S. A.
11			-					
12		3. No. 1					1943 Ma	
13								
14			8.47	2.V	지승과 대한 북부가 물가 못한	1996		

Date Shipped: 12-00-10 Carrier/ Shipping # UPS

1000

12.7.10

wit Hain

Received by _ Notes _____

Date Received

Ship to:

For microcystin ELISA: Sample Custodian USEPA Region 9 Lab 1337 S. 46th Street Building 201 Richmond, CA 94804 510-412-2389 For anatoxin-a and microcystin LCMS/MS: Dr. Abdou Mekebri Fish and Wildlife Water Pollution Control Lab 2005 Nimbus Road Rancho Cordova, CA 95670 (916) 358-4396 Send Results To:

Grant Johnson Karuk Tribe Dept of Natural Resources PO Box 282 Orleans, CA 95556 (530) 469-3258

Chain of Custody Karuk Tribe Department of Natural Resources Page⊥ of _

WPCL Lab#	Estimated MDL	Reporting Limit	L-620-10-1	L-620-10-2	L-620-10-3	L-620-10-4	L-620-10-5	L-620-10-6	L-620-10-7	L-620-10-8	L-620-10-9	L-620-10-10	-620-10-11	620-10-12	L-620-10-13	L-620-10-13Dup	L-620-10-14	L-620-10-15	L 620-10-16	L-620	D-10-MBLK L-	6/(0-10-LCS	L-620-10-6MS	L-620-10-6MSD
Sample Identification			OR092310-1S	OR092310-1S	OR092310-2S	OR092310-2S	OR092610-3S	DR092610-3S	DR092610-4S	OR092610-4S	OR092610-5S	OR092610-5S	IP092810-1C	IP092810-1C	IP092710-2C	IF 092710-2C	IF 092710-2C	IP092710-3C	IP092710-3C				OR J92610-3S	OR()92610-3S
Date Collected			23/Sep/2010	23/Sep/2010	23/Sep/2010	23/Sep/2010	26/Sep/2010	26/Sep/2010	26/Sep/2010	26/Sep/2010	26/Sep/2010	26/Sep/2010	28/Sep/2010	28/Sep/2010	27/Sep/2010	27/Sep/2010	27/Sep/2010	27/Sep/2010	27/Sep/2010				26/Sep/2010	2€/Sep/2010
Time Collected			NA	NA	NA	NA				NA	NA													
Date Received			30/Sep/2010	30/Sep/2010	30/Sep/2010	30/Sep/2010				3(/Sep/2010	30/Sep/2010													
Date Extracted			04/Dec/2010)4/Dec/2010	()4/Dec/2010	(I4/Dec/2010	04/Dec/2010	04/	/Dec/2010	04/Dec/2010	04/Dec/2010	04/Dec/2010												
Date Analyzed			08/Dec/2010)8/Dec/2010	(18/Dec/2010	(I8/Dec/2010	08/Dec/2010	68	/Dec/2010	08/Dec/2010	08/Dec/2010	08/Dec/2010												
Matrix			fish liver	fish fillet	fish liver	fish liver	fish fillet	fish liver	fish fillet	f	ish fillet	ish fillet	fish fillet	ish fillet										
			fresh weight	iresh weight	iresh weight	fresh weight	fresh weight	fresh weight	fre	esh weight	fresh weight	fresh weight	fresh weight											
Biotoxin Analytes	ppb	ppb	ppb (ng/g)	opb (ng/g)	ppb (ng/g)	ւթե (ng/g)	rpb (ng/g)	ppb (ng/g)	pp	b (ng/g) %	& Recovery	% Recovery	% Recovery											
MC-RR	0.500	1.00	ND	3.80	2.93	ND	ND	ND	s	ND	109	101	106											
MC-Desmethyl-RR*	0.500	1.00	ND	ND	ND	ND	e s u l	ND	NA	NA	NA													
MC-LR	0.500	1.00	ND	ND	ND	ND	trolR	ND	106	75.1	78.0													
MC-Desmethyl-LR	0.500	1.00	ND	ND	ND	ND	Con	ND	NA	NA	NA													
MC-YR	0.500	1.00	ND	ND	ND	ND	u a lity	ND	117	99.3	99.4													
MC-LA	0.500	1.00	ND	ND	ND	ND	a	ND	112	81.4	84.4													
MC-LW	0.500	1.00	ND	ND	ND	ND		ND	NA	NA	NA													
MC-LF	0.500	1.00	ND	ND	ND	ND		ND	NA	NA	NA													
MC-LY	0.500	1.00	ND	ND	ND	ND		ND	NA	NA	NA													
Anatoxin A	5.00	10.0	ND	ND	ND	ND		ND	NA	NA	NA													
Domoic acid	2.00	5.00	ND	ND	ND	ND		ND	NA	NA	NA													
Okadaic acid	1.00	2.00	ND	ND	ND	ND		ND	NA	NA	NA													
* Desmethyl-RR quantifi	ed as parent analo	, g compound.																						

APPENDIX II: Fish and Wildlife Water Pollution Control Lab Sheets September, 2010.

WPCL Lab#	Estimated MDL	Reporting Limit	L-641-10-1	L-641-10-2	L-641-10-3	L-641-10-3Dup	L-641-10-4	L-641-10-5	L-641-10-6	L-641-10-7	L-641-10-8	L-641-10-9	L-641-10-10	641-10-11	1-641-10-12	L-641-10-13	L-641-10-14	L-641-10-15	L 641-10-16	L 641-10-17	L-641-10-18	L-6	41-10-MBLK	L-641-10-LCS	L-641-10-4MS	L-641-10-4MSD
Sample Identification			IP093010-4C	IP093010-4C	IP092910-1C	IP092910-1C	IP092910-1C	WE092910-5S	WE092910-5S	IP093010-3C	P093010-3C	P092910-2C	P092910-2C	W/E092910-1S	W'E092910-1S	WE092910-2S	WE092910-2S	W E092910-4S	W 2092910-4S	WI:092910-3S	WI:092910-3S				IP(92910-1C	IP092910-1C
Date Collected			30/Sep/2010	30/Sep/2010	30/Sep/2010	30/Sep/2010	30/Sep/2010	30/Sep/2010	30/Sep/2010	30/Sep/2010	30/Sep/2010	30/Sep/2010	30/Sep/2010	30/Sep/2010	30/Sep/2010	30/Sep/2010	30/Sep/2010	30/Sep/2010	30/Sep/2010	30/Sep/2010	30/Sep/2010				30/Sep/2010	30/Sep/2010
Time Collected			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA				NA	NA
Date Received			07/Oct/2010	07/Oct/2010	07/Oct/2010	07/Oct/2010	07/Oct/2010	07/Oct/2010	07/Oct/2010	07/Oct/2010	07/Oct/2010	07/Oct/2010	07/Oct/2010	07/Oct/2010	07/Oct/2010	07/Oct/2010	07/Oct/2010)7/Oct/2010	()7/Oct/2010	(17/Oct/2010	(7/Oct/2010				07/Oct/2010	07/Oct/2010
Date Extracted			07/Dec/2010	07/Dec/2010	07/Dec/2010	07/Dec/2010	07/Dec/2010	07/Dec/2010	07/Dec/2010	07/Dec/2010	07/Dec/2010	07/Dec/2010	07/Dec/2010	07/Dec/2010	07/Dec/2010	07/Dec/2010	07/Dec/2010	(17/Dec/2010	(7/Dec/2010	07/Dec/2010	07/Dec/2010	(7/Dec/2010	07/Dec/2010	07/Dec/2010	07/Dec/2010
Date Analyzed			08/Dec/2010	08/Dec/2010	08/Dec/2010	08/Dec/2010	08/Dec/2010	08/Dec/2010	08/Dec/2010	08/Dec/2010	08/Dec/2010	08/Dec/2010	08/Dec/2010	08/Dec/2010	08/Dec/2010	08/Dec/2010)8/Dec/2010	(18/Dec/2010	(8/Dec/2010	(8/Dec/2010	08/Dec/2010	(8/Dec/2010	08/Dec/2010	08/Dec/2010	08/Dec/2010
Matrix			fish liver	fish fillet	fish liver	fish liver	fish fillet	fish liver	fish fillet	fish liver	fish fillet	fish liver	fish fillet	fish liver	fish fillet	fish liver	fish fillet	fish liver	fish fillet	fish liver	fish fillet		fish fillet	tish fillet	fish fillet	ish fillet
			fresh weight	fresh weight	fresh weight	fresh weight	fresh weight	fresh weight	fresh weight	fresh weight	fresh weight	fresh weight	fresh weight	fresh weight	fresh weight	iresh weight	resh weight	fresh weight	fresh weight	f esh weight	fresh weight	1	fresh weight	fresh weight	fresh weight	freish weight
Biotoxin Analytes	ppb	ppb	ppb (ng/g)	ppb (ng/g)	ppb (ng/g)	ppb (ng/g)	ppb (ng/g)	ppb (ng/g)	ppb (ng/g)	ppb (ng/g)	ppb (ng/g)	ppb (ng/g)	ppb (ng/g)	ppb (ng/g)	ppb (ng/g)	ppb (ng/g)	opb (ng/g)	ppb (ng/g)	¢pb (ng/g)	r pb (ng/g)	ppb (ng/g)	F	pb (ng/g)	% Recovery	% Recovery	% Recovery
MC-RR	0.500	1.00	2.71	ND	2.17	2.10	ND	ND	ND	ND	ND	ND	s	ND	104	113	113									
MC-Desmethyl-RR*	0.500	1.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	esult	ND	NA	NA	NA
MC-LR	0.500	1.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	trolR	ND	104	98.5	99.4
MC-Desmethyl-LR	0.500	1.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	C o D	ND	NA	NA	NA
MC-YR	0.500	1.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	u a lity	ND	125	120	108
MC-LA	0.500	1.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	a	ND	107	92.6	95.3
MC-LW	0.500	1.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	NA	NA	NA
MC-LF	0.500	1.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	NA	NA	NA
MC-LY	0.500	1.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	NA	NA	NA
Anatoxin A	5.00	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	NA	NA	NA
Domoic acid	2.00	5.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	NA	NA	NA
Okadaic acid	1.00	2.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	NA	NA	NA
* Desmethyl-RR quantifi	ed as parent analog	compound.																								

Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector <th>WPCL Lab#</th> <th>Estimated MDL</th> <th>Reporting Limi</th> <th>it L-678-10-1</th> <th>L-678-10-2</th> <th>L-678-10-3</th> <th>L-678-10-4</th> <th>L-678-10-5</th> <th>L-678-10-6</th> <th>678-10-7</th> <th>678-10-8</th> <th>L-678-10-9</th> <th>L-678-10-10</th> <th>L-578-10-11</th> <th>L-178-10-12</th> <th>L-178-10-13</th> <th>L-618-10-14</th> <th>L-6/8-10-15</th> <th>L-618-10-16</th> <th>L-673-10-17</th> <th>L-67 -10-18</th> <th>L-678-10-19</th> <th>L-678 10-20</th> <th>L-678-10-21</th> <th>L-678-10-3</th> <th>22 L-678-10-</th> <th>13 L-678-</th> <th>0-24 L-678-</th> <th>1)-25 L-67</th> <th>8-1(-26 L-6</th> <th>578-10-27 I</th> <th>L-678-10 28</th> <th>L-678-10-29</th> <th>L-678-10-10</th> <th>L-678-10-31</th> <th>L-678-10-32</th> <th>L-678-10-3</th> <th>L-678-10-3</th> <th>L-678-10-35</th> <th>L-678-10-36</th> <th>L-678-10-37</th> <th>L-678-10-3</th> <th>B L-678-10-3</th> <th>9 L-678-10-4</th> <th>0 L-678-10-4</th> <th>.1 L-578-10-42</th> <th>L 678-104</th> <th>3 L-678-1</th> <th>64</th>	WPCL Lab#	Estimated MDL	Reporting Limi	it L-678-10-1	L-678-10-2	L-678-10-3	L-678-10-4	L-678-10-5	L-678-10-6	678-10-7	678-10-8	L-678-10-9	L-678-10-10	L-578-10-11	L-178-10-12	L-178-10-13	L-618-10-14	L-6/8-10-15	L-618-10-16	L-673-10-17	L-67 -10-18	L-678-10-19	L-678 10-20	L-678-10-21	L-678-10-3	22 L-678-10-	13 L-678-	0-24 L-678-	1)-25 L-67	8-1(-26 L-6	578-10-27 I	L-678-10 28	L-678-10-29	L-678-10-10	L-678-10-31	L-678-10-32	L-678-10-3	L-678-10-3	L-678-10-35	L-678-10-36	L-678-10-37	L-678-10-3	B L-678-10-3	9 L-678-10-4	0 L-678-10-4	.1 L-578-10-42	L 678-104	3 L-678-1	64
Abbel Abbe Abbel Abbel	Sample Identification	1		HC101410-8C	HC101410-8C	HC101410-11S	HC101410-115	HC101410-12S	HC101410-12S	HC:101410-13S	HC 101410-13S	HC101410-14S	HC 01410-14S	HC101410-155 H	HC101410-15S W	iei)1510-165 V	IE1 I1510-16S	VE1(1510-17\$ V	E101510-17S	VE10/510-18S	WE101510-185	WE101510-19S	WE101710-19	S WE101910-209	6 WE101510-	1-205 OR1017 0-	215 OR1017	0-215 OR1017	10-228 OR10	1711/225 OR1	101711+23S O	R101710 235 0	R101710-24S	OR101710-145	OR101710-55	OR101710-155	IG101810-9C	IG101810-9)	IG101810-10C	IG101810-10	; IG101810-11	(; IG101810-1	IC IG101810-1	2C IG101810-1	2C IG101810-1	3C IG101810-13	C IG101810-14	4C IG10181	0-14C
Image: Control in the con	Date Collected			14/Oct/2010	14/0d/2010	14/Oct/2010	14/Oct/2010	14/Oct/2010	14/Oct/2010	14/Oct/2010	14/Oct/2010	4/Oct/2010	4/Oct/2010	14/Oct/2010	14/Oct/2010	1 /Oct/2010	15 Oct/2010	15 Oct/2010	15 Oct/2010	15/Dct/2010	15(Id/2010	15((c)/2010	15/Cct/201	0 15/0#/2010	15/0,1/2	2010 17/0(4/2	010 17/0	/2010 17/0	2010 17	Oct 2010 17	7/Oct 2010	17/Oct/2010	17/Oct/010	17/Oct/2010	17/Oct/2010	17/Oct/2)10	18/Oct/2(10	18/Oct/2010	18/Oct/20 (18/Oct/201	0 18/Oct/201	1) 180ct/2	11() 18/Oct/2	01(18/0ct/2	10 18/Oct/2	J10 18/Oct/20*	10 18/Oct/20	10 18/0:	1/2010
Import Amom Amom Amom Amom Amom Amom<	Time Collected			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N	(A)	(A	NA	NA	N)	N	N N	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Image: index Sec: 5 desc Sec: 5 desc Sec: 5 desc Sec: 5 desc Sec: 5 desc Sec: 5 desc <th>Date Received</th> <th></th> <th></th> <th>21/Oct/2010</th> <th>21/0d/2010</th> <th>21/Oct/2010</th> <th>2 /Oct/2010</th> <th>2 Oct/2010</th> <th>21 Oct/2010</th> <th>21 Oct/2010</th> <th>21/Dct/2010</th> <th>21/0ct/2010</th> <th>21/0ct/2010</th> <th>21(Cct/201</th> <th>0 21/0;#2010</th> <th>21/0,1/2</th> <th>2010 21/0(1/2</th> <th>010 21/0</th> <th>/2010 21/0</th> <th>2010 21</th> <th>Oct 2010 21</th> <th>1/Oct 2010</th> <th>21/Oct/2010</th> <th>21/Oct/010</th> <th>21/Oct/2010</th> <th>21/0ct/2)10</th> <th>21/Oct/2)10</th> <th>21/Oct/2(10</th> <th>21/Oct/2010</th> <th>21/Oct/201</th> <th>) 21/Oct/201</th> <th>0 21/Oct/201</th> <th>1) 210d2</th> <th>11) 21/Oct/2</th> <th>01(21/0ct/2</th> <th>10 21/0ct/2</th> <th>J10 21/Oct/201</th> <th>10 21/Oct/20</th> <th>10 21/00</th> <th>1/2010</th>	Date Received			21/Oct/2010	21/0d/2010	21/Oct/2010	21/Oct/2010	21/Oct/2010	21/Oct/2010	21/Oct/2010	21/Oct/2010	21/Oct/2010	21/Oct/2010	21/Oct/2010	21/Oct/2010	2 /Oct/2010	2 Oct/2010	21 Oct/2010	21 Oct/2010	21/Dct/2010	21/0ct/2010	21/0ct/2010	21(Cct/201	0 21/0;#2010	21/0,1/2	2010 21/0(1/2	010 21/0	/2010 21/0	2010 21	Oct 2010 21	1/Oct 2010	21/Oct/2010	21/Oct/010	21/Oct/2010	21/0ct/2)10	21/Oct/2)10	21/Oct/2(10	21/Oct/2010	21/Oct/201) 21/Oct/201	0 21/Oct/201	1) 210d2	11) 21/Oct/2	01(21/0ct/2	10 21/0ct/2	J10 21/Oct/201	10 21/Oct/20	10 21/00	1/2010
	Date Extracted			05/Feb/2011	05/Feb/2011	05/Feb/2011	05/Feb/2011	05/Feb/2011	05/Feb/2011	05/Feb/2011	05/Feb/2011	15/Feb/2011	(6/Feb/2011	(5/Feb/2011	05Feb/2011	01 (Feb/2011	05 Feb/2011	05 Feb/2011	05 Feb/2011	05/ ⁻ eb/2011	05Feb/2011	05/Feb/2011	05(Fsb/201	1 05Fbb201	1 (6/Feb/2	2011 05/Fex2	011 06 Fe	/2011 05/Fe	±/2011 05	Feb 2011 08	6 Feb 2011	05/Feb(3011	05/Feb/(011	05/Feb/2011	(6/Feb/2)11	(6/Feb/2)/1	05/Feb/2(11	05/Feb/2011	(6Feb/20)	1 05/Feb/201	1 05/Feb/201	11 (6Feb/2	11 05/Feb/2	011 06/Feb/2	011 06Feb/2	J11 06/Feb/201	.11 06Feb/20)11 06 Fel	b2011
Math <	Date Analyzed			13/Feb/2011	13/Feb/2011	13 Feb/2011	13/Feb/2011	13Feb/2011	13/Feb/2011	13/Feb/2011	13/Feb/2011	3/Feb/2011	3/Feb/2011	13/Feb/2011	18/Feb/2011	1: /Feb/2011	13 Feb/2011	13 Feb/2011	13 Feb/2011	13/Feb/2011	13Feb/2011	13/Feb/2011	13/F±b/201	1 13/Fib/2011	1 13Feb2	2011 13 Feb/2	011 13/Fe	i/2011 13Fe	±/2011 13	Feb 2011 13	3.Feb/2011	13Feb(3011	13/Feb/(011	13/Feb/2011	13Feb/2011	13/Feb/2011	13/Feb/2(11	13/Feb/2011	13Feb/201	13/Feb/201	1 13/Feb/201	11 13Feb2	11 13 Feb/2	011 13/Feb/2	011 13Feb/2	J11 13/Feb/201	.11 13Feb/20)11 13 Fel	b/2011
N </th <th>Matrix</th> <th></th> <th></th> <th>liver</th> <th>tissue</th> <th>liver</th> <th>tissue</th> <th>liver</th> <th>tissue</th> <th>liver</th> <th>tissue</th> <th>liver</th> <th>tissue</th> <th>liver</th> <th>tissue</th> <th>liver</th> <th>ti ssue</th> <th>liver</th> <th>issue</th> <th>liver</th> <th>t ssue</th> <th>lver</th> <th>ti: sue</th> <th>tissue</th> <th>liter</th> <th>r tisue</th> <th>là</th> <th>er tis</th> <th>sie</th> <th>liver</th> <th>tissue</th> <th>liver</th> <th>liver</th> <th>tissue</th> <th>liver</th> <th>fissue</th> <th>liver</th> <th>tissue</th> <th>tissue</th> <th>liver</th> <th>fissue</th> <th>liver</th> <th>tissue</th> <th>liver</th> <th>fissue</th> <th>liver</th> <th>tissue</th> <th>live</th> <th>a l</th>	Matrix			liver	tissue	liver	tissue	liver	tissue	liver	tissue	liver	tissue	liver	tissue	liver	ti ssue	liver	issue	liver	t ssue	lver	ti: sue	tissue	liter	r tisue	là	er tis	sie	liver	tissue	liver	liver	tissue	liver	fissue	liver	tissue	tissue	liver	fissue	liver	tissue	liver	fissue	liver	tissue	live	a l
A </th <th></th> <th></th> <th></th> <th>vet weight</th> <th>wet weight</th> <th>wet weight</th> <th>wet weight</th> <th>vet weight</th> <th>wet weight</th> <th>wet weight</th> <th>vet weight</th> <th>vet weight</th> <th>vet weight</th> <th>vet weight</th> <th>vet weight</th> <th>vet weight</th> <th>wstweight</th> <th>wit weight</th> <th>wet weight</th> <th>we: weight</th> <th>wel weight</th> <th>vet weight</th> <th>vet veight</th> <th>wet weight</th> <th>net vieiç</th> <th>ight wetweig</th> <th>ht vet i</th> <th>eight wet v</th> <th>ight we</th> <th>tweight w</th> <th>ret weight</th> <th>vet weight</th> <th>wet wei ht</th> <th>vet weicht</th> <th>wet weight</th> <th>wet weight</th> <th>wet weight</th> <th>wet weigh</th> <th>vet weight</th> <th>wet weight</th> <th>wet weight</th> <th>t vet weig</th> <th>t vet veig</th> <th>ht vet veig</th> <th>t wetweig</th> <th>t wet weight</th> <th>i vet weigh</th> <th>t vet w</th> <th>eight</th>				vet weight	wet weight	wet weight	wet weight	vet weight	wet weight	wet weight	vet weight	vet weight	vet weight	vet weight	vet weight	vet weight	wstweight	wit weight	wet weight	we: weight	wel weight	vet weight	vet veight	wet weight	net vieiç	ight wetweig	ht vet i	eight wet v	ight we	tweight w	ret weight	vet weight	wet wei ht	vet weicht	wet weight	wet weight	wet weight	wet weigh	vet weight	wet weight	wet weight	t vet weig	t vet veig	ht vet veig	t wetweig	t wet weight	i vet weigh	t vet w	eight
ck 13 13 10 <th< th=""><th>Biotoxin Analytes</th><th>ppb</th><th>ppb</th><th>ppb (ng/g)</th><th>ppb (ng/g)</th><th>ppb (ng/g)</th><th>ppb (ng/g)</th><th>ppb (ng/g)</th><th>ppb (ng/g)</th><th>ipb (ng/g)</th><th>(pb (ng/g)</th><th>pab (ngig)</th><th>p sb (ng/g)</th><th>p(b (ngig)</th><th>btp (uðjð)</th><th>pp > (ng/g)</th><th>ppi (ngig)</th><th>ppt (ng/g)</th><th>ppb (ng/g)</th><th>ppb (ng/g)</th><th>ppb ng/g)</th><th>ppb (1g/g)</th><th>ppb (1g/g)</th><th>ppb (rigig)</th><th>ppb (rg/g</th><th>lg) ppb (n plg</th><th>) ppb (n</th><th>(g) ppb (n</th><th>ç(g) ppb</th><th>(ng)g) ppi</th><th>b(ngig) p</th><th>ppb (ngl į)</th><th>ppb (ng/i)</th><th>ppb (ng/ç)</th><th>ppb (ng/g)</th><th>ppb (ng/g)</th><th>ppb (ngig)</th><th>ppb (ng/g)</th><th>ppb (ng/g)</th><th>ppb (ng/g)</th><th>ppb (ng/g)</th><th>ppb (ng/g</th><th>ppb (ng/g</th><th>) ppb (ng/g</th><th>ppb (ng/g</th><th>ppb (ng/g)</th><th>ppb (ng/g)</th><th>ppb (ng</th><th>(g)</th></th<>	Biotoxin Analytes	ppb	ppb	ppb (ng/g)	ppb (ng/g)	ppb (ng/g)	ppb (ng/g)	ppb (ng/g)	ppb (ng/g)	ipb (ng/g)	(pb (ng/g)	pab (ngig)	p sb (ng/g)	p(b (ngig)	btp (uðjð)	pp > (ng/g)	ppi (ngig)	ppt (ng/g)	ppb (ng/g)	ppb (ng/g)	ppb ng/g)	ppb (1g/g)	ppb (1g/g)	ppb (rigig)	ppb (rg/g	lg) ppb (n plg) ppb (n	(g) ppb (n	ç(g) ppb	(ng)g) ppi	b(ngig) p	ppb (ngl į)	ppb (ng/i)	ppb (ng/ç)	ppb (ng/g)	ppb (ng/g)	ppb (ngig)	ppb (ng/g)	ppb (ng/g)	ppb (ng/g)	ppb (ng/g)	ppb (ng/g	ppb (ng/g) ppb (ng/g	ppb (ng/g	ppb (ng/g)	ppb (ng/g)	ppb (ng	(g)
Accis Accis Accis B<	MC-RR	0.500	1.00	121	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	N	1)))	0	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND)
A A A B </td <td>MC-Desmethyl-RR*</td> <td>0.500</td> <td>1.00</td> <td>ND</td> <td>v0</td> <td>Ø</td> <td>D</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>1</td> <td>0</td> <td>ND</td> <td></td>	MC-Desmethyl-RR*	0.500	1.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	v0	Ø	D	ND	ND	ND	ND	ND	ND	ND	ND	1	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Ref. 6. 8. 9. <				_				_				_	_							_	_									_	_													_					
 <br<< td=""><td>MC-LR</td><td>0.500</td><td>1.00</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>152</td><td>ND</td><td>ND</td><td>N</td><td>D NO</td><td>))</td><td>0 1</td><td>D</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0</td><td>) ()</td><td>)</td><td>DI</td><td>ND</td><td>ND</td><td>NC)</td><td>ND</td><td>ND M</td><td>ı a</td><td>ND</td><td>ND</td></br<<>	MC-LR	0.500	1.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	152	ND	ND	N	D NO))	0 1	D	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0) ())	DI	ND	ND	NC)	ND	ND M	ı a	ND	ND
ic. 1 ic	MC-Desmethyl-LR	0.500	1.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0	ID	ND	ND	ND	NE)	ND	ND	ND	ND	1	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Act <th< td=""><td>MC-YR</td><td>0.500</td><td>1.00</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>vD</td><td>10</td><td>ID</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>)</td><td>0</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td></th<>	MC-YR	0.500	1.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	vD	10	ID	ND	ND	ND	ND	ND	ND	ND	ND)	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Alise Al	MC-LA	0.500	1.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	VD	0	ID	ND	ND	ND	NC	ND	ND	ND	ND	1	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Acc A	MG-LW	0.500	1.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	vD	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Act <th< td=""><td>MC+LF</td><td>0.500</td><td>1.00</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>VD</td><td>0</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>1</td><td>0</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td></th<>	MC+LF	0.500	1.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	VD	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Accise Accis Accise Accise	MG-LY	0.500	1.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Ø	10	ND	ND	ND	ND	NC	ND	ND	ND	ND	1	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Deficiency 10	Anatoxin A	5.00	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Ø	10	ND	ND	ND	ND	NC	ND	ND	ND	ND	1	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Contraction Contraction <thcontraction< th=""> <thcontraction< th=""></thcontraction<></thcontraction<>	Domoic acid	2.00	5.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	VD	0	ND	ND	ND	ND	NC	ND	ND	ND	ND	1	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Okadaic acid	1.00	2.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Ø	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Teeneth (R and ies and a constant)	* Desmethyl-RR quarti	ied as parent analo	ig compound.																																														

L-678-10-MBLK1	L-678-10-LCS1	L-678-10-2MS	L-678-10-2MSD	L-678-10-MBLK2	L-678-10-LCS2	L-678-10-23MS	L-678-10-23MSD	L-678-10-MBLK3	L-678-10-LCS3	L-711-10-4MS	L-711-10-4MSD
		HC101410-8C	HC101410-8C			OR101710-21S	OR101710-21S			IG110110-16C	IG110110-16C
		14/Oct/2010	14/Oct/2010			17/Oct/2010	17/Oct/2010			01/Nov/2010	01/Nov/2010
		NA	NA			NA	NA			NA	NA
		21/Oct/2010	21/Oct/2010			21/Oct/2010	21/Oct/2010			09/Nov/2010	09/Nov/2010
05/Feb/2011	05/Feb/2011	05/Feb/2011	05/Feb/2011	05/Feb/2011	05/Feb/2011	05/Feb/2011	05/Feb/2011	06/Feb/2011	06/Feb/2011	06/Feb/2011	06/Feb/2011
13/Feb/2011	13/Feb/2011	13/Feb/2011	13/Feb/2011	13/Feb/2011	13/Feb/2011	13/Feb/2011	13/Feb/2011	13/Feb/2011	13/Feb/2011	14/Feb/2011	14/Feb/2011
liver	liver	tissue	tissue	liver	liver	tissue	tissue	liver	liver	tissue	tissue
wet weight	wet weight	wet weight	wet weight	wet weight	wet weight	wet weight	wet weight	wet weight	wet weight	wet weight	wet weight
ppb (ng/g)	% Recovery	% Recovery	% Recovery	ppb (ng/g)	% Recovery	% Recovery	% Recovery	ppb (ng/g)	% Recovery	% Recovery	% Recovery
ND	80.0	89.7	87.8	ND	79.3	67.6	80.1	ND	83.1	76.7	69.7
ND	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA	NA
ND	97.8	112	110	ND	81.5	69.7	81.7	ND	75.2	118	121
ND	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA	NA
ND	86.7	117	119	ND	71.7	81.8	86.4	ND	76.8	103	107
ND	84.5	98.2	84.7	ND	102	71.2	79.9	ND	105	118	122
ND	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA	NA
ND	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA	NA
ND	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA	NA
ND	86.3	83.8	84.9	ND	82.1	86.9	88.6	ND	85.5	86.2	83.8
ND	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA	NA
ND	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA	NA

WPCL Lab#	Estimated MDL	Reporting Limit	L-711-10-1	L-711-10-2	L-711-10-3	L-711-10-4	L-711-10-5	L-711-10-6	L-711-10-7	L-711-10-8	L-711-10-9	L-711-10-10	L-711-10-11	L-711-10-12		L-678-10-MBLK3	L-678-10-LCS3	-711-10-4MS	-711-10-4MSD
Sample Identification			IG110110-15C	IG110110-15C	IG110110-16C	IG110110-16C	IG110110-17C	IG110110-17C	IG110110-18C	IG110110-18C	IG110110-19C	IG110110-19C	IG110110-20C	IG110110-20C				IG110110-16C	IG110110-16C
Date Collected			01/Nov/2010				01/Nov/2010	01/Nov/2010											
Time Collected			NA				NA	NA											
Date Received			09/Nov/2010				09/Nov/2010	09/Nov/2010											
Date Extracted			06/Feb/2011		06/Feb/2011	06/Feb/2011	06/Feb/2011	06/Feb/2011											
Date Analyzed			14/Feb/2011		13/Feb/2011	13/Feb/2011	14/Feb/2011	14/Feb/2011											
Matrix			liver	tissue		liver	liver	tissue	tissue										
			wet weight		wet weight	wet weight	wet weight	wet weight											
Biotoxin Analytes	ppb	ppb	ppb (ng/g)		ppb (ng/g)	% Recovery	% Recovery	% Recovery											
MC-RR	0.500	1.00	ND		ND	83.1	76.7	69.7											
MC-Desmethyl-RR*	0.500	1.00	ND	esults	ND	NA	NA	NA											
MC-LR	0.500	1.00	ND	rol R	ND	75.2	118	121											
MC-Desmethyl-LR	0.500	1.00	ND	Cont	ND	NA	NA	NA											
MC-YR	0.500	1.00	ND	uality	ND	76.8	103	107											
MC-LA	0.500	1.00	ND	a	ND	105	118	122											
MC-LW	0.500	1.00	ND		ND	NA	NA	NA											
MC-LF	0.500	1.00	ND		ND	NA	NA	NA											
MC-LY	0.500	1.00	ND		ND	NA	NA	NA											
Anatoxin A	5.00	10.0	ND		ND	85.5	86.2	83.8											
Domoic acid	2.00	5.00	ND		ND	NA	NA	NA											
Okadaic acid	1.00	2.00	ND		ND	NA	NA	NA											
* Desmethyl-RR quantifi	ied as parent analo	g compound.																	

WPCL Lab#	Estimated MDL	Reporting Limit	L-742-10-1	L-742-10-2	L-742-10-3	L-742-10-4	L-742-10-5		L-742-10-MBLK	L-742-10-LCS	L-711-10-4MS	L-711-10-4MSD
Sample Identification			IG112910-1CO	IG112910-1CO	IG112910-2CO	IG112910-2CO	IG112910-3CO				IG110110-16C	IG110110-16C
Date Collected			29/Nov/2010	29/Nov/2010	29/Nov/2010	29/Nov/2010	29/Nov/2010				01/Nov/2010	01/Nov/2010
Time Collected			NA	NA	NA	NA	NA				NA	NA
Date Received			07/Dec/2010	07/Dec/2010	07/Dec/2010	07/Dec/2010	07/Dec/2010				09/Nov/2010	09/Nov/2010
Date Extracted			06/Feb/2011	06/Feb/2011	06/Feb/2011	06/Feb/2011	06/Feb/2011		06/Feb/2011	05/Feb/2011	06/Feb/2011	06/Feb/2011
Date Analyzed			14/Feb/2011	14/Feb/2011	14/Feb/2011	14/Feb/2011	14/Feb/2011		14/Feb/2011	14/Feb/2011	14/Feb/2011	14/Feb/2011
Matrix			tissue	liver	tissue	liver	liver		liver	liver	tissue	tissue
			wet weight		wet weight	wet weight	wet weight	wet weight				
Biotoxin Analytes	ppb	ppb	ppb (ng/g)		ppb (ng/g)	% Recovery	% Recovery	% Recovery				
MC-RR	0.500	1.00	ND	ND	ND	ND	ND		ND	71.5	76.7	69.7
MC-Desmethyl-RR*	0.500	1.00	ND	ND	ND	ND	ND	esult	ND	NA	NA	NA
MC-LR	0.500	1.00	ND	ND	ND	ND	ND	trol R	ND	80.8	118	121
MC-Desmethyl-LR	0.500	1.00	ND	ND	ND	ND	ND	Con	ND	NA	NA	NA
MC-YR	0.500	1.00	ND	ND	ND	ND	ND	uality	ND	80.3	103	107
MC-LA	0.500	1.00	ND	ND	ND	ND	ND	G	ND	107	118	122
MC-LW	0.500	1.00	ND	ND	ND	ND	ND		ND	NA	NA	NA
MC-LF	0.500	1.00	ND	ND	ND	ND	ND		ND	NA	NA	NA
MC-LY	0.500	1.00	ND	ND	ND	ND	ND		ND	NA	NA	NA
Anatoxin A	5.00	10.0	ND	ND	ND	ND	ND		ND	88.7	86.2	83.8
Domoic acid	2.00	5.00	ND	ND	ND	ND	ND]	ND	NA	NA	NA
Okadaic acid	1.00	2.00	ND	ND	ND	ND	ND		ND	NA	NA	NA
* Desmethyl-RR quantifi	ed as parent analo	g compound.										