Review of the Klamath River Model for the Klamath Hydropower Project FERC #2082

DRAFT

by

Scott A. Wells

Robert Annear

Micahel McKillip

Prepared for

The Bureau of Land Management Project Manager: Barbara Machado

and

Karuk Tribe Project Manager: Jim Henderson

May 3, 2004

Table of Contents

Table of Contents	1
List of Figures	1
List of Tables	2
Introduction	3
Review of Model Set-Up and Calibration	5
Review of Model Files for CE-QUAL-W2	19
Lake Ewauna/Keno Dam Model	19
JC Boyle, Iron Gate, Copco Models	20
Review of Model Kinetic Coefficients for CE-QUAL-W2 and RMA11 Models	20
Review of Model Alternatives	21
Review of SOD Measurements in Lake Ewauna/Keno Dam	22
Summary and Recommendations	22
Appendix A: Review Documents	24
Appendix B: Model Checklist for CE-QUAL-W2	33
Appendix C: CE-QUAL-W2 Parameter Values and Kinetic Coefficients	76
Year 2000	77
Year 2001	88
Appendix D: RMA2/RMA11 Parameter Values and Kinetic Coefficients	100
Appendix E: Water Quality Characteristics between RMA 11 and CE-QUAL-W2	105
Appendix F: Alternatives Analysis: Impact of Withdrawal Elevation on Iron Gate and Copcc)
Reservoirs	119
Iron Gate Reservoir: Examination of withdrawal elevation effects	119
Copco Reservoir: Examination of withdrawal elevation effects	127

List of Figures

Figure 1. CE-QUAL-W2 model water quality cycles - existing figure Figure 2. Corrected CE-QUAL-W2 water quality cycles))
Figure 3. Temperature and dissolved model predictions contrasting 2.5 m and 1 m vertical grid spacing for Iron Gate Reservoir	3
Figure 4. Iron Gate profiles of temperature with DZ=2.5m and DZ=1 m on day 271.5 at segment 26.	3
Figure 5. Iron Gate profiles of dissolved oxygen with DZ=2.5m and DZ=1 m on day 271.5 at segment 26.	4
Figure $\tilde{6}$. Iron Gate profiles of pH with DZ=2.5m and DZ=1 m on day 271.5 at segment 26 14	1
Figure 7: Total Nitrogen for Link River model output and Lake Ewauna model input 109)
Figure 8: Total Phosphorus for Link River model output and Lake Ewauna model input 110)
Figure 9: Total Organic Carbon for Link River model output and Lake Ewauna model input 11	1
Figure 10: Total Ultimate Biochemical Oxygen Demand for Link River model output and Lake	
Ewauna model input	2
Figure 11: BOD5 for Link River model output and Lake Ewauna model input	3
Figure 12: Algae concentration for Link River model output and Lake Ewauna model input 114 Figure 13: Dissolved oxygen concentration for Link River model output and Lake Ewauna	1
model input	5

Figure 14: Ammonia for Link River model output and Lake Ewauna model input Figure 15: Nitrate and nitrite concentration for Link River model output and Lake Ewauna	116
model input	117
Figure 16: Phosphate for Link River model output and Lake Ewauna model input	118
Figure 17. Withdrawal flows at Iron Gate dam.	120
Figure 18. Temperature profiles in Iron Gate for JD 221.5 at segment 27 comparing different	ıt
outlet elevations.	121
Figure 19. Temperature profiles in Iron Gate for JD 271.5 at segment 27 comparing differen	ıt
outlet elevations.	122
Figure 20. Dissolved oxygen profiles in Iron Gate for JD 221.5 at segment 27 comparing	
different outlet elevations.	123
Figure 21. Dissolved oxygen profiles in Iron Gate for JD 271.5 at segment 27 comparing	
different outlet elevations.	124
Figure 22. Temperature of mixed outlet water from Iron Gate reservoir using different outlet	
levels.	125
Figure 23. Impact on dissolved oxygen below Iron Gate reservoirs with lower outlet levels a	t
both Copco and Iron Gate.	126
Figure 24. temperature profile at segment 21 of Copco Reservoir comparing the base	
simulation with a lower outlet level configuration on JD221.5.	127
Figure 25. Dissolved oxygen profile at segment 21 of Copco Reservoir comparing the base	
simulation with a lower outlet level configuration on JD221.5.	128
Figure 26. Temperatures released from Copco Reservoir during 2000 for the lowered outlet	
configuration.	129

List of Tables

Table 1. Model Reach simulation periods	
Table 2. Model calibration comments.	5
Table 3. List of files available from PacifiCorp Relicensing web page:	
http://www.pacificorp.com/article/article1152.html	24
Table 4. CE-QUAL-W2 parameter values and kinetic coefficients for reservoir models,	
simulation year 2000	77
Table 5. CE-QUAL-W2 parameter values and kinetic coefficients for reservoir models,	
simulation year 2001	88
Table 6. River Reach comparisons for RMA2\RMA11	100
Table 7. RMA2/RM11 parameter values and kinetic coefficients	101
Table 8: Water quality constituents simulated by RMA11 and CE-QUAL-W2	105

Introduction

The Klamath River water quality model was developed as part of the Klamath River Hydropower Project by PacifiCorp. The Bureau of Land Management (BLM) contracted for a review of this model. This report consists of a review of both written documents and of model computer files.

The materials used in the review include

- documents provided by PacifiCorp and Watercourse Engineering (see Appendix A)
- model files provided by Watercourse Engineering (a total of approximately 23 CDs)

A detailed review of each CE-QUAL-W2 model file set was performed going through a check-list of items for each model in Appendix B. Also, water quality kinetic parameter values for the CE-QUAL-W2 and RMA11 models were summarized and compared in Appendix C.

This memorandum is broken into several sections:

- Review of the model set-up and calibration
- Review of Model Files for CE-QUAL-W2
- Review Model Kinetic Coefficients for CE-QUAL-W2 and RMA11 Models
- Review of model alternatives
- Review of SOD measurements in Lake Ewauna/Keno Dam
- Summary and Recommendations
- Appendices outlining materials reviewed, detailed check sheets for each of the CE-QUAL-W2 model sets, detailed review sheets for model water quality kinetic coefficients used in the CE-QUAL-W2 and RMA11 models, review of whether there was a correct mass balance between RMA11 and CE-QUAL-W2 models, and a review of a simple management strategy for Copco and Iron Gate reservoirs using the CE-QUAL-W2 models.

The basic philosophy of this review was to provide constructive comments to improve the science and engineering being applied to the Klamath basin. In order to guide the review, Table 1 shows a summary of all the model run periods for each model reach.

Reach	Calibration Period(s)	Validation Period(s)	Model Run Periods
Link River	May 21 to 23, 2002	July 16 to 18, 2002	MI: January 1, 2000 to December 31, 2000 and January 1, 2001 to December 31, 2001 MC&V: May 18 to 23, 2002 and July 13 to 18, 2002
Lake Ewauna/Keno	June 1 to 7, 2000 July 1 to 7, 2000 August 1 to 7, 2000 September 1 to 7, 2000 October 1 to 7, 2000	June 1 to 7, 2001 July 1 to 7, 2001 August 1 to 7, 2001 September 1 to 7, 2001 October 1 to 7, 2001	MI: January 1, 2000 to December 31, 2000 Appendix H: January 1, 2001 to December 31, 2001 MC&V: January 1, 2000 to December 31, 2000 and January 1, 2001 to December 31, 2001
Klamath River (Keno Reach)	May 20 to 23, 2002	September 10 to 12, 2002 July 14 to 17, 2002	MI: January 1 to December 31, 2000 MC&V: May 19 to 23, 2002, July 13 to 17, 2002, and September 9 to12, 2002
J. C. Boyle Reservoir	April 12 to October 18, 2000 (7 dates with vertical profiles)	none	MI: January 1 to December 31, 2000 MC&V: January 1, 2000 to December 31, 2000
Klamath River (Bypass & Peaking Reach)	May 20 to 23, 2002	July 15 to 18, 2002	MI: January 1 to December 31, 2000 MC&V: May 17 to 23, 2002 and July 12 to 18, 2002
Copco Reservoir	April 12 to October 18, 2000 (8 dates with vertical profiles)	none	MI: January 1 to December 31, 2000 MC&V: January 1, 2000 to December 31, 2000
Iron Gate Reservoir	April 12 to October 18, 2000 (8 dates with vertical profiles)	none	MI: January 1 to December 31, 2000 MC&V: January 1, 2000 to December 31, 2000
Klamath River (Iron Gate Dam to Tuwar)	June 5 to 7, 2000 August 7 to 9, 2000 June 9 to 12, 2003 August 18 to 21, 2003	none	MI: January 1 to December 31, 2000 MC&V: June 3 to 7, 2000, August 5 to 9, 2000, June 5 to 12, 2003, and August 14 to 21, 2003
MI: Model Implementation, Section 2 MC&V: Modal Calibration and Validation, Section 3			

Table 1. Model Reach simulation periods

Review of Model Set-Up and Calibration

This section is a review of the model set-up and calibration process. The following comments are provided in a tabular form for ease of evaluation.

#	Topic	Comment
1	рН	The CE-QUAL-W2 model computed pH, and hence required boundary condition
		data of total inorganic carbon and alkalinity. According to the RMA 11 model
		documentation, this model does not compute pH. Since the Klamath River has
		been water quality listed for pH, having a model capable of evaluating pH is an
		important modeling consideration. If this is indeed a parameter of interest, then
		either a model capable of modeling pH needs to be used for the entire basin or
		RMA11 needs to be modified to include pH computations.
2	W2 –	It is awkward, albeit possible, to use different models in different reaches of the
	RMA	Klamath basin. This is usually not the preferred approach because of issues with
	linkage	translation between models, especially when the models handle water quality
	issues	parameters differently and the boundary conditions for the models are not tied
		together explicitly.
		Issues with model linkage
		• The downstream boundary condition (BC) of the Link River model was the $\frac{1}{100}$
		Keno Dam water level (based on data) + 9; the Keno reach was 10.2 ft of
		water elevation at downstream dam (JC Boyle), and the Bypass and
		peaking Reach use Copco Reservoir water levels + 59.21 It. Willy is this a notantial problem? (1)There were never any data shown in the reports at
		the end of the river model domain to know whether this water level
		estimate was correct (2) The purpose of the model is to provide a tool that
		can be predictive. In this case, the downstream BC of the river is always
		tied to water level data at the downstream dam a location still further
		downstream from the river model's downstream boundary. In other words,
		you must know the water level downstream, before you can use this
		information upstream. Hence, this set-up is never predictive. You can never
		run the models in a truly predictive mode for water level.
		How can this be avoided? (1) Use the same model for the entire system
		such that the head BC at the end of the river reach is dependent on the
		water level at the upstream location of the downstream reservoir reach.
		This would necessitate solving the river and reservoir reaches
		simultaneously, as you would do with 1 model for the reach. (2) Less
		desirable is to set a downstream weir as the end BC for the river model
		such that the head and flow are related in a rational way and there is no
		dependency on downstream conditions.
		• RMA11 uses organic P and organic N compartments. When the CE-
		OUAL-W2 model is used as a boundary condition to the RMA11 model
		there are no translation problems since W2 computes a derived variables

Table 2. Model calibration comments.

 Organic P and Organic N and these can be used directly in RMA11. The problem comes in when RMA11 is the upstream model, and the results from the RMA11 model is being used as input to the CE-QUAL-W2 model. On p. 47 of the Klamath Modeling Framework Report, it was stated that "because CE-QUAL-W2 includes the algae fraction in organic N and organic P, the algal compartment of each nutrient [was] subtracted from the total." It is unclear from this statement how this was performed explicitly. For example, on p. 56 of the Klamath Modeling Framework, the following formula was presented on how to compute LDOM for the W2 model for the Spencer Creek inflow: LDOM=Total P-Phosphate/0.005 where the 0.005 is a stoichiometric coefficient between organic matter and P. It was assumed that this technique was used for other inflows, but the technique was never clearly shown for this translation.
Apparently in RMA11, all the organic matter containing P is represented by the organic P state variable. This includes algae and other non-living dissolved and particulate forms of organic matter. In RMA11 a distinction is not made between organic P that settles and that does not settle since all organic P is associated with a settling velocity. The oxygen consumption by the breakdown of organic matter is represented in the BOD compartment. In W2, this is complicated by the use of organic matter compartments and BOD compartments.
In CE-QUAL-W2 the total P (as a derived variable) is represented as Total phosphorus: $\delta_P \Phi_{LDOM} + \delta_P \Phi_{RDOM} + \delta_P \Phi_{LPOM} + \delta_P \Phi_{RPOM} + \sum \delta_{Palgae} \Phi_{algae} + \Phi_{PO4}$ $+ \sum \delta_{BODP} \Phi_{BOD}$ where
$\begin{split} & \Psi_{\text{RPOM}}^{\text{where}} \\ & \delta_{\text{P}}: \text{ stoichiometric ratio of P to organic matter} \\ & \delta_{\text{BODP}}: \text{ stoichiometric ratio of P to BOD} \\ & \Phi_{\text{RDOM}}: \text{ concentration of refractory dissolved organic matter} \\ & \Phi_{\text{LDOM}}: \text{ concentration of labile dissolved organic matter (LDOM)} \\ & \Phi_{\text{algae}}: \text{ concentration of algae biomass (multiple algae groups allowed)} \\ & \Phi_{\text{LPOM}}: \text{ concentration of labile particulate organic matter (LPOM)} \\ & \Phi_{\text{RPOM}}: \text{ concentration of refractory particulate organic matter} \\ & \Phi_{\text{PO4}}: \text{ concentration of dissolved orthphosphorus} \\ & \Phi_{\text{BOD}}: \text{ concentration of BOD (multiple BOD groups allowed)} \end{split}$
Hence, the proper formula for computing LDOM should have been $TP - [\delta_P \Phi_{RDOM} + \delta_P \Phi_{LPOM} + \delta_P \Phi_{RPOM} + \sum \delta_{Palgae} \Phi_{algae} + \Phi_{PO4}$ $\Phi_{LDOM} = \frac{+\sum \delta_{BODP} \Phi_{BOD}]}{\delta_P}$

Hence, the formula for Spencer Creek is correct if there is no BOD, algae, and particulate forms of organic matter. This may be valid for Spencer Creek, but it is not clear how this was done for the river-reservoir models. It seems probable that the BOD correction was not accounted for since it was never mentioned in the reports.
What could be done? (1) Confirm calculation technique of organic matter between river-reservoir reaches and if in error, the conversion can be correctly applied. (2) Clearly explain the conversion for all water quality variables between the 2 models since this was not found explicitly in the reports.
• The linkage of BOD between the RMA11 and CE-QUAL-W2 models may not have been done correctly or there may have been some confusion in the use of BOD for each model. The RMA11 manual shows that BOD is treated as BOD-ultimate in the computations – see User Manual p. 3.6. In CE-QUAL-W2, the BOD parameter can be any BOD value the user decides to use, i.e., BOD5, BOD10, BOD20, BOD-ultimate. What dictates the users' choice often depends on what form the boundary condition data is in. The model user chooses a coefficient, termed RBOD, which converts the BOD of the BC into the BOD-ultimate form for calculations. In all the W2 models evaluated, the term RBOD was set to 1.85. This is typical of a BOD5 boundary condition data. But if the RMA11 model uses BOD- ultimate in its calculations and then passes these to the CE-QUAL-W2 model, the current model coefficient for W2 assumes the BOD is BOD5. The W2 model then multiplies the BOD by the RBOD factor (1.85), and uses that value as BOD-ultimate.
What could be done? (1) Check the BOD data and how the data were reported. If the data were in BOD5, then they would need to be corrected to BOD-ultimate for the RMA11 model. Then the W2 models would need to have the RBOD parameter set to 1.00 since the input would be assumed in ultimate form. (2) Also, the total organic matter leaving RMA11 model and being sent to W2 needs to be verified carefully and documented. A check on this calculation technique can be obtained by computing total C, total N, and total P leaving RMA11 and verifying that the CE-QUAL-W2 derived variables total C, total N and total P at the upstream entrance of the W2 model are in agreement with the RMA 11 model. Otherwise, it is unclear whether the translation was performed correctly.
As a check on this conversion process, a check was made of the Total N, Total P, and Total Organic C coming out of the RMA11 model and going into the CE-QUAL-W2 model at the Link River-Lake Ewauna boundary. This is summarized in Appendix E.
• On p. 116 Figure 88 of the Appendix 4A of the Klamath River Modeling Framework, the inflow concentrations of BOD and LDOM coming into the Lake Ewauna/Keno reach from the Link River reach seem unbelievably

		 high. For example, the peak BOD (is it BOD5 or BODu?) is shown to be over 50 mg/l, while the peak LDOM is about 45 mg/l. If one converts the LDOM to BOD using a stoichiometric coefficient of 1.4, this is equivalent to about 63 mg/l BOD-ultimate. These are very high. <u>Recommendation:</u> As mentioned earlier, re-check conversion. During the calibration process, it was stated that "flow conditions are
		generally not passed from reach to reach. That is, historical flows were used as headwater boundary conditions for most reaches." Hence, data were used rather than model predictions of flow. This is not standard modeling practice since the goal of modeling is to provide a model capable of simulating correctly the flow at various control points. There is no reason why flow routing between model segments could not have been done to test the model. There were no model-data calibration comparisons found in the written reports with a Klamath River model where all reaches were linked together. The only time this was performed was when the no- dam scenarios were simulated.
		Standard modeling practice as part of calibration is to ensure that the model reproduces (1) the correct flow and water level regime, then (2) temperature, and then finally (3) water quality. Standard modeling practice is to route flow, temperature and water quality from the headwaters to the end of the model domain between model reaches.
		<u>What could be done?</u> (1) Ensure that the model predictions of flow at the end of a reach agree with historical data. (2) Use model predictions of flow to route between reaches. Note that if the model reproduces the historical data, then the 2 approaches are identical. But this was not shown clearly in the report.
3	W2 Organic matter	On p. 23 of the Appendices to the Klamath River Modeling Framework Report (section B) on the model description is a figure describing the water quality model CE-QUAL-W2. This figure, shown in Figure 1, does not correctly describe how CE-QUAL-W2 handles organic matter. This is a concern because of comment #2 above and issues with translation of organic matter between the models. Figure 2 shows the corrected figure.

		Note that in Figure 2 there is no flux BOD to the BED in W2 and there should also be links of growth and respiration for algae to the nutrients nitrate, ammonia and ortho-P. The other organic matter compartments, labile and refractory dissolved and particulate, are not represented either. <u>What could be done?</u> (1) Correct chart in report and (2) check that this chart was not used as a basis for translating organic matter between RMA11 and W2 and between field data and W2. Also, it should be noted that the W2 models used in the Klamath did not have
		and was used in the RMA 11 models.
4	Source code used for CE- QUAL- W2	The source code used for the W2 model was dated 6/12/03. The latest one available is from February 2004. It is suggested that the latest source codes be used especially if bug fixes corrected in the interim (see <u>http://www.cee.pdx.edu/w2</u>) are deemed important.
5	Met data	 It is recognized that obtaining meteorological data for a water quality modeling project can be challenging. There were several issues with regard to the meteorological data development and the boundary conditions for the surface heat exchange: Solar radiation from Klamath Falls was used everywhere in the domain. There were no comparisons to other gages in the region to assess how well this represented the system. <u>What could be done?</u> Usually in the development of the meteorological data, an attempt is made to show where all meteorological stations are located and how data compare. This is a critical boundary condition for the models. But there is nothing inherently incorrect in using this data set. The dew point temperature was computed from the dry bulb, relative humidity and atmospheric pressure data. An adiabatic lapse rate correction was applied to the dry bulb temperature as a function of elevation. But this was not done in all cases for dew point temperature. In some cases, the dry bulb temperature was based on the older uncorrected dry bulb temperature. Hence, in many cases this caused the relative humidity to be raised, sometimes above 100%. Since the evaporation is controlled by the relative humidity, this could affect evaporative heat transfer and bias the model results. For example, the Iron Gate CE-QUAL-W2 meteorological data files had the same dew point temperature as those for Lake Ewana/Keno even though the dry bulb temperatures were adjusted. <u>What could be done?</u> Unless field data suggest otherwise, be consistent in applying adiabatic lapse rates. If the dry bulb is adjusted, then the dew point should also be recomputed based on the corrected dry bulb. This would have the effect of keeping the relative humidity constant. There was no mention of the importance or lack of importance of vegetative or topographic shade in the river reaches of the Klamath River.

		In the CE-OUAL-W2 model, the shade was assumed to be 0 for all
		reservoir segments. In many rivers flowing in narrow canyons, tonographic
		shading can be important in assessing temperature dynamics. This should
		be evaluated and if deemed important a model should be chosen that can
		accurately account for the dynamic effects of shading
6	BC data	 Water quality and temperature boundary condition data often show data
0	DC dulu	gaps. Where there efforts to fill in these gaps when they were significant?
		For example Figure 5 on p 18 and Figure 6 on p 19 in the Klamath
		Modeling Framework report show a large data gap between IDAY 90 and
		140 for temperature and dissolved oxygen. On Figure 11 on p. 28 there is a
		gap in the flow rate data for the Klamath Falls WWTP. These are just some
		examples of data gaps. What could be done? For some critical data the
		gaps must be filled. Sometimes this is accomplished by using statistical
		data correlations, using data from other basins/discharges, or doing
		theoretical analyses to generate synthetic time series. These gaps become
		an issue when model alternatives are run with the same missing data – see
		for example, Figure 4.8-1 in the Water Resources FTR p. 4-20. If this is not
		a critical time of year, then this missing information is not important. But
		from a pure modeling perspective, filling data gaps is usually done to the
		best of one's ability to eliminate any issues with linearly interpolating
		boundary conditions between long periods of time.
		• In Table 5 on p. 5 in the Klamath Modeling Framework report, algae BCs
		for Link River reached as high as 22.8 mg/l biomass. How were algae
		biomass computed? Generally this would be based on chlorophyll a data
		and using as chlorophyll a to algae ratio. <u>What could be done?</u> Show the
		calculation technique and the value of the conversion used. Ensure that this
		is consistent between data conversions and models' assumed values.
		• For Lake Ewana/Keno, some of the BC data were averaged. For example,
		the Klamath Falls and South Suburban WWIP data were monthly averaged
		even though higher resolution data was available. There is no restriction in
		CE-QUAL-W2 in using more frequent BC data. Often by time-averaging
		BC data, one compromises the models ability to respond to dynamic
	XX7 /	events. What could be done? Use the actual data at its given frequency.
	Water-	• In using CE-QUAL-W2 for a reservoir, a water balance is used to ensure
	balance	that there is water continuity. The best way to illustrate this is to show
		This is an assortial part of the model calibration. What could be done?
		Show graphs of model predictions of water levels in the reservoirs
		compared to field data
		• Water balances were used for the reservoirs, but how the water necessary
		• Water balances were used for the reservoirs, but now the water necessary to match water levels was applied varied from reservoir to reservoir. For
		example for Lake Ewana/Keno the water balance flows were added as a
		distributed tributary but for L C Boyle Reservoir these were added or
		subtracted from Spencer Creek Also in some cases the added or
		subtracted flows to match water levels was excessively high On n 32 in
		the Klamath Modeling Framework Figure 18 a spike in inflow of 1200 cfs
		was followed by a negative spike of 1700 cfs. This fictitious flow is of the
		same order as the entire flow out of the Keno Dam. Similarly for JC Boyle
1	1	

		were on the order of 1000 cfs – a large fraction of the actual flow. This explains why there were numerical instabilities with this model application. <u>What could be done?</u> (1) Generally, one should smooth out or filter large inflows followed immediately by large outflows. This can set up instabilities and mix a system unnecessarily. If it is a large value that cannot be smoothed or filtered, then there may be a problem with the water balance or there may be a large unaccounted for source or sink. Showing the added flows was done and was helpful. But explanations need to accompany the graphs to explain large flow rates and what effect they have on the model. (2) Adding or subtracting 'accretion/depletion' flow from a side tributary is not usual practice. Either use a distributed tributary to spread this over the entire model domain, or alter the main inflow or outflow. If the flow is added/subtracted from a side tributary, there needs to be a rationale for doing so.
8	Bathy- metry	 The report states that new bathymetry for the CE-QUAL-W2 model for Lake Ewana/Keno was available in 2003. Was this used in the model especially since the bathymetry for this section was very sensitive to the model predictions? For the RMA model sections, the river widths in the model were based on "7X running average of measured widths". Why was this done? Usually one needs to use the actual measured widths in a model since the more physically correct the model is, generally the more accurate the model. Unequal longitudinal grid spacing in the CE-QUAL-W2 models can degrade the numerical solution somewhat. If one uses segment lengths that vary from 135 ft to1600 ft in JC Boyle and from 121 ft to 1680 ft in Irongate, these are very large variations. To ensure that such unequal spacing does not affect the numerical solution, sensitivity tests should be performed to evaluate model sensitivity to this choice of spacing. If there are no issues, then the spacing is fine. Vertical spacing in Lake Ewana/Keno and JC Boyle was a 1 m or less. In Copco and Iron Gate Reservoirs, the vertical spacing was 2 m and 2.5 m, respectively. Generally, this is very coarse for a stratified reservoir. The rationale for this was computational time. Furthermore, it was stated that sensitivity showed that they did not affect model results, the differences between 1 m and 2.5 m were 'insignificant'. As a test of this for Iron Gate reservoir, a test was made converting the grid to a 1 m spacing using the CE-QUAL-W2 supplied grid editor and running the supplied model for the year 2000. Figure 3 shows temperature and dissolved oxygen model predictions at segment 26 using the 2 different grids. Even though the same trends are noted for the 2 grids, generally the smaller 1 m grid had higher surface temperatures and lower dissolved oxygen values than the coarser 2.5 m grid. During the peak of the summer a typical temperature difference was 1°C.

10	Model	• In Appendix 4A of the Water Resources Report, p. 97 it was mentioned	
	calibra-	that the model was calibrated only for temperature and dissolved oxygen	
	tion	and not for nutrients and algae. As difficult as it is to calibrate for nutrients	
		and algae, one really cannot calibrate for dissolved oxygen unless one	
		knows that the nutrients and algae are calibrated. Since the model	
		sensitivity showed that the models are sensitive to algae – suspended and	
		benthic, it would be difficult to say the model is calibrated to dissolved	
		oxygen. Where is this an issue? Primarily in using the models to predict the	
		impact of management scenarios. If the nutrients and algae are large	
		contributors to the DO budget, one would not have confidence in the	
		models' ability to predict these for management alternatives.	
		• In the RMA11 models, the phytoplankton algae growth rates were typically	
		set to 0.01 day ⁻¹ while in the CE-QUAL-W2 model the growth rates were	
		set much higher from 2-6 day ⁻¹ . Even though this was justified as the	
		difference between riverine and lake/reservoir conditions, this does not	
		seem like a reasonably value for the RMA11 model. Also, the very high	
		value of 6 d ⁻¹ in Copco Reservoir seem extremely high for a single algae	
		species. Even though this is extremely complicated and often critical	
		information is lacking, an ideal situation would be for all the models to use	
		generally similar kinetic coefficients. Then the characteristics of the	
		waterbody would determine the rate of algae growth, rather than the	
		Spekane Piver system (see http://www.eee.pdv.edu/w2/spekane) where	
		river reaches are punctuated by reservoirs. In the rivers, periphyton grows:	
		but in the reservoir phytoplankton grow. All of this is accomplished using	
		the same kinetic parameters for the entire modeled system. Only in this	
		way can you have a predictive model when using the model for	
		management scenarios	
		• The value of light extinction for the RMA11 models (1.5 m ⁻¹) is extremely	
		high compared to the W2 model light extinction values $(0.25 \text{ m}^{-1} +$	
		contribution from algae and suspended solids). Why was there such a sharp	
		difference in light extinction values between models?	
		• SOD values in Lake Ewauna/Keno were thought to play a modest role in	
		oxygen depletion. SOD values were set to 2 $g/m^2/day$ for all model	
		segments. This appears to be based on sediment oxygen demand wor	
		in anther part of the study. Further comments are made in a later section of	
		this review on this issue. One thing is certain, this reach is extremely	
		complex and many forcing functions are acting in concert. In contrast, the	
		model developed by Wells had SOD values ranging from 1-14 g/m ² /day	
		based on SOD sampling by Oregon DEQ. <u>Suggestion:</u> (1) If the re-	
		examination of the BOD-LDOM issues show that there was too much	
		dissolved BOD coming into the model, then SOD may be more important.	
		It was a critical part of the earlier CE-QUAL-W2 model especially in the	
		region near the log rafts. (2) As a sensitivity analysis, use the SOD values	
		used in the model developed by wells and note the impact on model	
		predictions. Also, compare the boundary conditions used in wells to those	
		 Model calibration statistics for Lake Evenue were compiled only for the 1st 	
		week of the 5 months June-July-August-September-October This is not a	

	standard calibration approach Why was this done? Suggestion: Compute
	statistics for all model data periods. If one wants to parse out statistics for
	statistics for all model-data periods. If one wants to parse out statistics for shorter periods as a result of locking at seasonal shorters or some other
	shorter periods as a result of fooking at seasonal changes of some other
	situation, this is appropriate. But the overall statistics should be snown.
	• It is admittedly very difficult to model the Lake Ewauna/Keno Dam
	system. The model predictions of DO and algae are not reasonable enough
	to consider using this model with a high degree of confidence for
	management scenarios. Much of this uncertainty can be a result of
	unknown or poorly understood boundary conditions. This system may have
	better predictive ability using multiple algal groups (see the Spokane model
	discussion on multiple algal groups – note link above).
	• There were no comparisons of model predictions of BOD and chlorophyll a
	to field data taken in 2000 for Lake Ewauna/Keno Dam. Suggestion: Use
	2000 field data for model-data comparisons (FTR Chapter 1 p. 3-3 to p. 3-5
	show that BOD data exist for this reach for 2000). This is such an
	important issue that if data exist there needs to be a model-data comparison
	to assist in guiding the calibration. One cannot know if one is calibrating
	DO correctly without these checks. [Similar comments can be made for
	other CE-QUAL-W2 model reservoir sections.]
	• The RMA11 model below Iron Gate, instead of using DO results from the
	upstream W2 model, used DO data from a Datasonde during model
	calibration. Even though this is acceptable to show that the model
	reproduces data over a river reach, the Iron Gate W2 model should be used
	to try to match these continuous data. This should be part of the calibration
	effort. Also, all the river-reservoir segments should be linked together with
	flow and water quality to check an overall system calibration to see if the
	entire system linked together can reproduce data, such as below Iron Gate
	reservoir. Without performing this, it is difficult to say that the linked
	model has predictive capability as a system model.
	• Since the Water Resources FTR p 3-3 shows that there was attached algae
	sampling in 2000 and 2001 for areas between RM 253 and RM 128.9 the
	river model should be compared to these data to see whether the RMA11
	model is reasonable
	• There was no hydrodynamic calibration done on the reservoir reaches. The
	nurpose of the modeling effort is developing a system model which will
	look at the effects on reservoir operations on the rivers downstream
	hydrodynamic calibration needs to be done on the reservoirs to ensure the
	appropriate flows are passing downstream. The report presents results of
	temperature and dissolved ovugen vertical profiles illustrating that these
	constituents were calibrated. In order to properly calibrate temperature and
	discolved ovvgen the quantity and timing of water need to be calibrated
	first
	In the introduction of Section 2 Model Calibration and Validation the
	• In the introduction of Section 5, whote Calibration and Valuation the
	report states. Existing unit are insufficient to test the actual hydrodynamic
	this is true
	• There was no discussion comparing river stage levels with model results at
	the locations with USGS gage stations.

		• The temperature collibration on the river reaches scenes to have consisted
		• The temperature canoration on the river reaches seems to have consisted primarily of adjusting the evaporation formulation parameters. There was
		little or no discussion of how shade solar radiation other meteorological
		conditions sediment temperature heat lost to sediment that is added back
		to the water channel depth and width or river slope had effected the
		temperature calibration
		 Reservoir model results show only seven or eight vertical profiles of
		temperature data. Were any time series data collected? In the report on
		nage 180 under Section 3.7 Conco Reservoir (and ng 188 Iron Gate
		Reservoir) there is a statement indicating there are hourly dissolved oxygen
		and temperature data but there are no model-data comparison plots or error
		statistics
		• If a temperature instrument is maintained at a specific depth below the
		water surface in a reservoir then the model output used in comparison with
		the data should be at a fixed depth rather than at a fixed model layer. The
		only exception would be if the water level in the reservoir did not change
		more than the vertical grid thickness.
		• In section 3.2.1.1 Boundary Conditions (Link River) the report states: "Due
		to the inherent variability and infrequent sampling interval of the grab
		data, the boundary condition values for nutrients, BOD, and algae were
		assumed to be a constant value for the calibration and validation
		<i>period</i> " The variability of the grab sample data does not justify keeping
		it constant during the model simulation periods, unless the data itself is
		suspect. The variability of the data should be included in the model input,
		not removed. If there were no data collected during the calibration and
		validation periods then the nearest two points in time when grab samples
		were taken should be interpolated or a more detailed analysis should be
		conducted of the data that is available.
		• The report does not specify the justification for the initial bed algae mass
		estimate of 5 g/m ² .
		• Error statistics for DO and temperature calibration are still coarse for most
		of the CE-QUAL-w2 systems. For temperature calibration, one should be
		able to achieve average temperature statistics at or less than I C RMS
		error. The RMA model sections were so short that the ability of the model
		to predict the concentration of temperature is dependent on the inflow houndary condition rather than the kinetic coefficients. The full impact of
		the kinetic coefficients for the river is seen only when the system was run
		WOP (without project) but with untested model coefficients
		 There was limited discussion of pH model data comparisons in the system
		which would indicate how well the model was simulating algal
		productivity
11	Model	This may be a philosophical issue, but the term validation is often not correctly
	valid-	used in the literature. According to Table 1, for the RMA models, calibration was
	ation	usually for over a period of 3 days, and then validation was based on another 3 day
		period. Model validation is usually thought of as the application of the model to an
		independent set of data. If that were true, why not use the model for 1 hour for
		calibration and 1 hour for validation? Really, this is just model calibration to 2 sets
		of data. The term validation is often used to assume the model has met the test of
		acceptableness. Running a model for such a short time period is usually not of

		sufficient duration to be significant nor to assure the user that it is calibrated for
		periods calibration periods and eliminate the term validation
12 M se iv	fodel ensit- vity	 The RMA11 model was sensitive to the Minimum reaeration value of 3 d⁻¹. This value seems high, why was this chosen for the model calibration? There was no exploration of the sensitivity of the river model to the initial bed algae value. This should be done and hopefully new field data will help ascertain if model predictions of benthic algae were reasonable. The model sensitivity analysis does not look at shade conditions (vegetative or topographic); meteorological conditions such as solar radiation or cloud cover; or the wind sheltering conditions (WSC). Shade and meteorological conditions are important aspects of the heat budget and should be included in the sensitivity analysis. The list of model parameters in the sensitivity analysis for CE-QUAL-W2 included TSEDF and TSED but there were no model results showing their sensitivity. Both model parameters should be included in the sensitivity analysis and model results presented. The sensitivity analysis did not include any discussion of how sensitivity of each model parameter was conducted and there was no presentation of model results. The report provided a summary table with general categories of sensitivity and did not characterize or quantify the sensitivity.
13 G cc m	deneral om- nents	 The current report is confusing to follow because there are model input and boundary conditions discussed in Section 2, Model Implementation; Section 3, Model Calibration and Validation; and Appendix H, 2001 Lake Ewauna/Keno Reach Boundary Conditions – Graphical and Tabular Presentation. Model development and boundary conditions for all simulation periods should be presented and discussed together. The authors use the phrases "formal calibration" and "not formally calibrated," and "primary constituents" and "secondary constituents" without defining them. These phrases are used many times in the report and the reader is left to infer their meaning. Equation 6.1 on page 98 should be cited in the Modeling Framework report. All plots showing model-data comparisons should clearly indicate the location of the site relative to the upstream boundary condition or provide the RM location for landmarks, boundary condition locations and calibration points. In Section 3.3 Lake Ewauna-Keno Dam Reach, pg 112, the report states: "Additional field work and model testing completed during the summer of 2003" The data and the model results from 2003 should be presented in the report.

Review of Model Files for CE-QUAL-W2

As noted in the introduction, a detailed check list for each CE-QUAL-W2 model was performed and was summarized in Appendix B. This check list evaluated the following items for each model run shown in Table 1 for CE-QUAL-W2:

- Evaluate boundary condition (BC) files What is their frequency? Are there any errors?
- Run the model file PREW2 and evaluate all model warnings and model errors
- Run the CE-QUAL-W2 bathymetry editor Does the system look correct in plan view?
- Run the model Does it run? Were there any run errors?

Summary comments from this review include:

Lake Ewauna/Keno Dam Model

- a. Klamath Straits inflow temperatures were found to be at zero for several periods in 2000 and 2001 at the beginning and ending of the simulation.
- b. Storm water concentration files (1-11) included alkalinity concentration above 200 mg/L for the existing condition and steady Flow scenarios for 2000. Alkalinity concentrations for 2001 were 52 mg/L.
- c. There were no water balance files used for 2000 or 2001 for Existing Conditions scenario.
- d. The particulate organic matter compartments were turned off for all of tributaries and the upstream boundary condition but the constituents were turned on to be simulated for both 2000 and 2001 and both existing conditions and steady flow. This is reasonable if the POM from algae is being tracked.
- e. Minor issue: the preprocessor noted that the bottom selective withdrawal layer for withdrawal number 2 was below the bottom active layer for segment 51
- f. No interpolation was used with the tributary inflows. This may not be a problem but the implications should be evaluated.
- g. The solar radiation data appears to have several errors with excessively high values. Julian day 230.417 has solar radiation value of at 3810.802 W/m². Additional errors appear to occur from Julian day 230.458 to 230.542 and at 256.50.
- h. The solar radiation data in 2001 appears to be about 5% higher than in 2000. The modeler may want to investigate why there is a difference between the two years, especially if the data were collected by the same instrument.
- i. The wind direction data in 2000 is primarily from 270 to 335 deg (from north) and 145 to 175 deg and in 2001 is primarily from 280 to 340 deg and 145 to 175 deg. The grid orientation is primarily 15 to 65 deg but scattered over 0 to 160 and 310 to 360 deg. The modelers should test the sensitivity of the model to the direction of the wind. The wind sheltering coefficient was set at 1.0 for the 2000 and 2001 simulations. The report described using data from only one meteorological station. Often the wind sheltering coefficients are a calibration tool for vertical mixing since the wind data is often imperfect.

JC Boyle, Iron Gate, Copco Models

- a. Winter water temperatures were observed to be well below freezing in the water column in January. The model documentation reports that little input data exist from late fall to mid spring and calibration was not conducted for these periods. Activating the ice cover calculation algorithm in CE-QUAL-W2 or some other consideration may improve the model results over the winter months.
- b. Some branch inflow constituent input files contain isolated negative values for NH4, NO3, and LDOM. While this is unlikely to affect model results, the errors call into question the quality of the input data and the care in constructing the input data files. A review of the data gathering and/or generation process is worthwhile. The outlier values should be set to zero as a minimum course of action.
- c. The preprocessor found a single value of wind speed greater than 20 m/sec. This data should be checked to make sure this is a valid value of wind speed.
- d. The preprocessor program flags some formatting errors in several branch inflow and temperature input files. While only affecting the last day of the model run, these errors should be corrected.
- e. The air temperature data were adjusted for elevation for application to some models. The dew point temperature was not adjusted, but probably should be adjusted to maintain the same relative humidity. Without adjusting dew point temperature, there are some winter relative humidity values well above 100%.
- f. Model grid:
 - i. The JC Boyle model has a segment (#4) with three more active layers than the adjacent segments. Insufficient flow through these cells probably results. In other words, there is a stagnant zone that in which only diffusion can occur vertically.
 - ii. For the Copco model, the preprocessor identifies two cases of adjacent cell widths not meeting the 7 times maximum change in width criterion for numerical stability. This may not be not important if the model is stable.
 - iii. The Iron Gate longitudinal grid length (DLX) has a segment (#8) which is much shorter than the adjacent segments—36 m compared to 513 and 403 m. This needs to be verified since numerical inaccuracies may result and the model will run for much longer simulation times as a result of this change in DLX.

Review of Model Kinetic Coefficients for CE-QUAL-W2 and RMA11 Models

Appendix C and Appendix D show the kinetic coefficients used in the CE-QUAL-W2 and RMA 11 models for each of the run simulations shown in Table 1. The objective of this effort was to

- Make sure of consistent use of coefficients between model scenarios
- Evaluate model coefficient changes from one model to another and evaluate consistency between simulations
- Ensure that reported values of coefficients were in agreement with written text

Summary comments from this review include:

1. <u>CE-QUAL-W2 model</u>

- a. Several notations are made in Table 4 and Table 5 showing inconsistencies in what was stated in the reports and what was included in the model files. The reports need to be updated with the appropriate parameter values.
- b. The value of the parameter CBHE should be at the default value of 0.3 W/m2. The values 7E-8 were the old default value before the W2 model was corrected by a bug fix. Also, the high values of 3 and 17.14 in Copco and Iron Gate are very unusual. Generally this parameter should not be raised to that high of a value in order to calibrate temperature. If one has to use a parameter value this high to match temperature data, something else may well be incorrect, such as model bathymetry. Using these high temperature heating/cooling rates with a sediment temperature of 7°C seems unjustifiable especially since the sediment temperature of the other systems was 12°C.
- c. Maximum algae growth rates of 6 d⁻¹ in Copco and Iron Gate are unusually high values. It may reflect an issue with nutrient availability and having enough nutrients available to sustain a high growth rate (which should probably be less than 6d⁻¹).
- d. Why was AHSN set to 0 for JC Boyle Reservoir? This could be appropriate if you have N-fixing algae. But if this is the case, why only in JC Boyle reservoir?

2. RMA11 model

- a. The bed algae mortality rate of 0.0 d^{-1} is unrealistic. There must be some mortality rate. We realize though that this mortality could be factored in the RESP rate which seems high at 0.6 d^{-1} .
- b. The algal growth rate of 0.01 d^{-1} and the respiration rate of 0.05 d^{-1} are unusual. This implies that phytoplankton will never grow. Is this realistic?
- c. Why was the Elevation of the site in m different for different runs for the Bypass and Peaking Reach (see Table 7 in Appendix D)?
- d. Why was the space step different in the Iron Gate to Turwar model between the calibration and the application?

Review of Model Alternatives

The primary alternatives considered with the model were 4 different scenarios: EC, SF, WOP, and WOPII for 2000 and 2001 where the model is run for the entire year. Running the WOP project with the RMA models for the full-length of the Klamath system is basically an untested model. The only RMA calibration occurred over periods of 3 days (calibration) and 3 days (validation) for short stretches of the Klamath River above Iron Gate. It has not been demonstrated that the results of the RMA models for the no dam scenario have been tested. More confidence could be placed in these alternatives simulations if the existing models passed flow, temperature and water quality from one system to the next during model calibration. Since the models were broken up and tested independently, the full-system model remains untested.

Note for example Figure 4.8-70 where DO below Iron Gate for the WOP alternative shows DO swings from 0 to over 16 mg/l. CE-QUAL-W2 predictions for the same time period show variation from approximately 4-12 mg/l. The cause of this high and low DO is obviously algae – for the RMA model benthic algae. And since the model has not been calibrated to algae, it is hard to view the predictions of the WOP alternative as being reasonable at this time. If the cause of this DO excursion is nutrients from

Link River, then luxuriant growth along the entire river length would be expected. But model predictions of DO for WOP above Iron Gate are not as dramatic as shown in this figure.

Alternatives that were not considered, but that could be easily examined with the reservoir models, are changes in the withdrawal of water from the reservoir systems. It may have a negative impact, but changing the withdrawal of water so stratification does not develop in Copco and Iron Gate could be evaluated with the W2 models. Since this was easy to perform with the existing Copco and Iron Gate CE-QUAL-W2 models, this alternative was performed and results summarized in Appendix F.

Review of SOD Measurements in Lake Ewauna/Keno Dam

The Water Resources FTR Chapter 9 includes sediment oxygen demand data (SOD) from the Klamath system. In this case, SOD measurements were taken to conclude that in Lake Ewauna/Keno Dam reach SOD is of moderate impact, whereas the "oxygen dynamics are controlled to a large extent by the nature of the water entering the system rather than sediment/water interactions in the impounded areas." This led the modeler for Lake Ewauna/Keno Dam to choose values of SOD at a maximum value of 2 g/m²/day for this entire model reach.

The following comments can be made about the sampling methodology:

- 1. The details of the sediment testing are not mentioned. Were the samples put on ice after the coring? How long were they on ice before being analyzed in a laboratory? The cores were extracted up to 4 days before being taken to the laboratory. Did this affect the biological community?
- 2. The conclusion is reached that the BOD of the overlying water was responsible for most of the oxygen uptake, not the sediment uptake. But what was the source of the BOD above the sediment core? Was it from anoxic decay products released from the sediments, such as NH4, CH4, and other compounds with a high oxygen equivalent? If the water above the sediment is a result of decay products from the sediments, could not all the SOD be a result of sediment processes?
- 3. No data in Chapter 9 is shown for other nutrients, such as ammonia. These nutrient data should also be summarized in this chapter.
- 4. No mention was made of 2 other studies of SOD in Lake Ewauna/Keno Dam where chambers were used to measure in-situ SOD: an Oregon DEQ study in the early 1990s (where SOD values as high as 12-14 g/m²/day were observed in chamber tests near the log raft area) and tests by the USGS in 2003 (where SOD values from approximately 2 to 3.7 g/m²/day were obtained).

Measuring SOD is not easy. There are many issues with performing the test and locating a representative sampling location. And there is no doubt that the inflow from the Upper Klamath Lake and the Klamath Straights Drain add much organic matter to this reservoir stretch. But in this study little was said of the impact on SOD of the log raft operation which in an earlier CE-QUAL-W2 study of this reach was a dominant part of the study in terms of oxygen depletion and ammonia release.

Summary and Recommendations

This report is a summary of review comments on the model development for the Klamath River system. Both written documents and model files were examined. Detailed review comments, suggestions for improvement and questions are included in the body of this report. Preparing a model of a large river system punctuated by stratified reservoirs is a challenging exercise. The consultant for PacifiCorp has invested much time and effort in preparing these models. Regardless there are many areas where the models can be improved to increase the reliability of model predictions.

Is the current model ready to evaluate management strategies with a high degree of confidence? There are many issues that need to be resolved before we can have confidence in the model's ability to postulate the impacts of a particular management strategy for the Klamath River. This is especially true since the entire system model has never been tested where flow and water quality are all transferred from one reach to the next and model predictions and data are compared. As the models are not calibrated for nutrients and algae, the dissolved oxygen model predictions for management alternatives cannot be viewed as being accurate. Drawing sweeping conclusions from the models at this point is not justified. Nevertheless, this is a process which can be improved – and with it, the models' ability to predict impacts would also improve.

Many recommendations were made throughout the body of this report in order to improve the model's predictive ability. These will not be repeated here in the interest of brevity. Using as a system model with only 1 model would improve eliminate issues with translation of one model to another in terms of water quality and boundary conditions. Also, this would simplify the model application considerably. Calibrating an entire system model, even if one kept the present model choice, is an important step in understanding how well the integrated model performs.

Appendix A: Review Documents

The table below summarizes the files available for review from the PacifiCorp web site. Many of these files were reviewed in detail for this report. The primary written review documents are itemized below:

- <u>Klamath River Modeling Framework to Support the PacifiCorp Federal Energy Regulatory</u> <u>Commission Hydropower Relicensing Application</u>, Draft 11-14-2003, prepared for PacifiCorp, by Watercourse Engineering, Inc. The report was provided on a CD by PacifiCorp.
- <u>Chapters 1-3 in the Water Resources FTR</u>, dated February 2004, provided from the web site.
- Chapter 4 in the Water Resources FTR, dated February 2004, provided from the web site.
- <u>Chapter 9 in the Water Resources FTR</u>, dated February 2004, provided from the web site.
- Appendix 4A from Water Resources Report Klamath River Modeling Framework, dated Draft 11-14-03
- <u>RMA11 User Manual</u>, provided on CD by Watercourse Engineering

Other information provided by Watercourse Engineering included approximately 22 CDs containing all the model files for CE-QUAL-W2 and RMA2/11 models.

Table 3. List of files available from PacifiCorp Relicensing web page: http://www.pacificorp.com/article/article1152.html.

Documents	Reviewed for
	this report
Klamath Draft License Application	
Cover Letter	
Table of Contents Vol. 1	
Table of Contents Vol. 2	
Initial Statement	
Executive Summary	
Exhibit A: Project Description	
Exhibit B: Project Operation and Resource Utilization	
Exhibit C: Construction History and Proposed Construction	
Exhibit D: Statement of Costs and Financing	
Exhibit E: Environmental Report	
Exhibit E: Table of Contents, Introduction and General Description	
Exhibit E: Water Use and Quality	
Exhibit E: Fish Resources	
Exhibit E: Fish Resources - Document	
Exhibit E: Fish Resources - Figures	
Exhibit E: Fish Resources - Figure E4.2-1 Site Plan	
Exhibit E: Fish Resources - Figure E4.2-2 Hatchery Complex	
Exhibit E: Fish Resources - Figure E4.2-3 Adult Fish Facilities	
Exhibit E: Botanical and Wildlife Resources	
Exhibit E: Botanical and Wildlife Resources - Document	
Exhibit E: Botanical and Wildlife Resources - Figures	
Exhibit E: Botanical and Wildlife Resources - Figure E5.1-1 - Terrestrial Study Area	

Exhibit E: Cultural Resources	
Exhibit E: Recreation Resources	
Exhibit E: Recreation Resources - Document	
Exhibit E: Recreation Resources - Figures	
Exhibit E: Figure E7.1-1 - Project Recreation Sites and Study Area	
Exhibit E: Land Management and Aesthetics	
Exhibit E: Land Management and Aesthetics - Document	
Exhibit E: Land Management and Aesthetics - Figures	
Exhibit E: Land Management and Aesthetics - Figure E8.1-1 - Land Ownership	
Exhibit E: Land Management and Aesthetics - Figure E8.1-2 - Zoning	
Exhibit E: Land Management and Aesthetics - Figure E8.1-3 - Existing	
Land Use	-1
Exhibit E: Land Management and Aesthetics - Figure E8.2-1 - Floodpla	ain
Exhibit E: Socioeconomics	
Exhibit E: Appendices	
Exhibit E: Appendices - E-1A Consultation Record	
Exhibit E: Appendices - E-8A Visual Resources Project Facilities	
Exhibit E: Appendices - E-8A Visual Resources Project Operations	
Exhibit F: Design Drawings	
Exhibit G: Maps	
Exhibit H: Applicant's Qualification to Operate the Project	
Klamath Draft Technical Reports	
Water Resources - Table of Contents	
Water Resources - Chapters 1, 2 and 3	\checkmark
Water Resources - Chapter 4	\square
Water Resources - Chapter 5	\checkmark
Water Resources - Chapter 6	\checkmark
Water Resources - Chapters 7, 8 and 9	\checkmark
Water Resources - Chapters 10, 11, 12 and 13	
Klamath Draft Technical Report - Water Resources - Appendices	$\overline{\mathbf{A}}$
Water Resources - Appendix 2A, 2B - WQ Sample Sites & Constituents	
Water Resources - Appendix 3A - Quality Assurance	
Water Resources - Appendix 3A - Standard Operating Procedure	
Water Resources - Appendix 3B & 3C - Summary & Statistics of Data/All Sampling Sites	
Water Resources - Appendix 4A - WQ Modeling Framework	$\overline{\mathbf{A}}$
Water Resources - Appendix 4B - River Geometry	
Water Resources - Appendix 4C - Meteorological Data	
Water Resources - Appendix 5A - Flow Information - Cover Sheets	
Water Resources - Appendix 5A - Part 1 - Link River	
Water Resources - Appendix 5A - Part 2 - Keno	
Water Resources - Appendix 5A - Part 3 - JC Boyle 1	
Water Resources - Appendix 5A - Part 3 - JC Boyle 2	\square
Water Resources - Appendix 5A - Part 4 - Iron Gate	\square

	Water Resources - Appendix 5B - Flow Information - Cover Sheets	\checkmark
ĺ	Water Resources - Appendix 5B - Part 1 - Fall Creek	
ĺ	Water Resources - Appendix 5B - Part 2 - Spring Creek	
ĺ	Water Resources - Appendix 6A - Study Site Field Survey Data	
İ	Water Resources - Appendix 6B - Bed Mobility Threshold Calculations	
ĺ	Water Resources - Appendix 6C - Bedload Transport Calculations	
	Water Resources - Appendix 8A - Tables of Macroinvertebrate Taxa and	
	Metrics Results	
ł	Klamath Draft Technical Report - Fish Resources	
ł	Klamath Draft Technical Reports - Terrestrial Resources	
ł	Klamath Draft Technical Report - Terrestrial Resources - Appendices	
	Terrestrial Resources - Appendix Cover Sheets	
	Terrestrial Resources - Appendix 2A - Plant Community Classification System Crosswalk	
	Terrestrial Resources - Appendix 2B - Species Frequency and Abundance for Vegetation	
	Terrestrial Resources - Appendix 2C - Description Stats for Veg Layer Aerial Cover	
	Terrestrial Resources - Appendix 4A - Amphibian/Reptile Survey Observation Form	
	Terrestrial Resources - Appendix 4B - Foothill Yellow-legged Frog Survey Datasheets	
	Terrestrial Resources - Appendix 4C - Results of Amphibian and Reptile Surveys, 2002	
İ	Terrestrial Resources - Appendix 5A - Tables	
	Terrestrial Resources - Appendix 5B - Project Data Sheets for Avian Point Counts, etc.	
	Terrestrial Resources - Appendix 5C - TES Plant Species Occurrence Records	
	Terrestrial Resources - Appendix 5D - List of Plant SSP Observed during TES Surveys	
	Terrestrial Resources - Appendix 5F-1 - Bird & Wildlife Point Counts/Search Surveys	
	Terrestrial Resources - Appendix 5F-2 - Bird & Wildlife Point Counts/Search Surveys	
	Terrestrial Resources - Appendix 5G - Rel. Abund. of Avian Species/Wetland & Riparian	
İ	Terrestrial Resources - Appendix 6A - Site-specific Background Information	
İ	Terrestrial Resources - Appendix 7A - Tables	
ł	Klamath Draft Technical Report - Cultural Resources	
ł	Klamath Draft Technical Report - Recreation	
	Recreation - Table of Contents and Introduction	
ĺ	Recreation - Recreation Flow Analysis	
	Recreation - Recreation Visitor Surveys	
	Recreation - Regional Recreation Analysis	
	Recreation - Recreation Needs Analysis	
	Recreation - Recreation Resource Management Plan	
	Recreation - Literature Cited	
ļ	Klamath Draft Technical Report - Recreation Resources - Appendices	
•	Recreation - Appendix 2A - List and Profile of Phase Linterviewees	
	Recreation - Appendix 2B - Phase Interview Format	
	Recreation - Appendix 2C- Add' Info for RI M Planning-Hell's Corper	
	Recreation Appendix 20 Add the blint lanning-field come	

each	
acception Announding OD, List of Dhase II Controlled Flow Dertisingents	
ecreation - Appendix 2D- List of Phase II Controlled Flow Participants	
ecreation - Appendix 2E - Phase II Controlled Flow Survey Instruments	
ecreation - Appendix 2F - Add'l Results JC Boyle Bypass Reach ontrolled Flow Study	
ecreation - Appendix 2G - Add'l Results Hell's Corner Reach Controlled ow Study	
ecreation - Appendix 2H - Add'l Info from Middle Klamath Phase I Effort	
ecreation - Appendix 3A - Rec Survey Questionnaire, Interview, and ount Forms	
ecreation - Appendix 3B - FERC Form 80	
ecreation - Appendix 4A - Question Form for Reg'l Rec oviders/Managers	
ecreation - Appendix 5A - Recreation Site Inventory and Condition Forms	
ecreation - Appendix 5B - Developed Recreation Site Photographs	
ecreation - Appendix 5C - Developed Recreation Site Plans	
ecreation - Appendix 5D - Dispersed Recreation Site and Use Area notographs	
ecreation - Appendix 5E - Completed Inventory and Conditions Forms for eveloped and Dispersed	
ecreation - Appendix 6A - Draft Annotated Outline Rec Resource Mgmt an	
math Draft Technical Report - Land Use, Visual and Aesthetic Resources	
math Draft Technical Report - Land and Visual Asthetics - Appendices	
math Draft Technical Report - Land and Visual Asthetics - Appendices Would not open	
math Draft Technical Report - Land and Visual Asthetics - Appendices Would not open math Draft Technical Report - Socioeconomic Resources	
math Draft Technical Report - Land and Visual Asthetics - AppendicesWould not open math Draft Technical Report - Socioeconomic Resources math Relicensing Study Plans	
math Draft Technical Report - Land and Visual Asthetics - AppendicesWould not open math Draft Technical Report - Socioeconomic Resources math Relicensing Study Plans math Study Plans - Complete List by Work Group	
math Draft Technical Report - Land and Visual Asthetics - AppendicesWould not open math Draft Technical Report - Socioeconomic Resources math Relicensing Study Plans math Study Plans - Complete List by Work Group v Study Plans - Draft Conceptual Outlines	
math Draft Technical Report - Land and Visual Asthetics - AppendicesWould not open math Draft Technical Report - Socioeconomic Resources math Relicensing Study Plans math Study Plans - Complete List by Work Group v Study Plans - Draft Conceptual Outlines ew Proposed - Fry Sampling at JC Boyle Reaches Study Plan	
math Draft Technical Report - Land and Visual Asthetics - Appendices Would not open math Draft Technical Report - Socioeconomic Resources math Relicensing Study Plans math Study Plans - Complete List by Work Group v Study Plans - Draft Conceptual Outlines ew Proposed - Fry Sampling at JC Boyle Reaches Study Plan ummary of Info-Investigation of Trout & Anadro. Fish Genetics-Klamath ydro Proj Area (SP 1.17)	
math Draft Technical Report - Land and Visual Asthetics - Appendices Would not open math Draft Technical Report - Socioeconomic Resources math Relicensing Study Plans math Study Plans - Complete List by Work Group v Study Plans - Draft Conceptual Outlines ew Proposed - Fry Sampling at JC Boyle Reaches Study Plan ummary of Info-Investigation of Trout & Anadro. Fish Genetics-Klamath ydro Proj Area (SP 1.17) terature Based Characterization of Resident Fish Entrainment-Turbine duced Mortality - Klamath	
math Draft Technical Report - Land and Visual Asthetics - Appendices Would not open math Draft Technical Report - Socioeconomic Resources math Relicensing Study Plans math Study Plans - Complete List by Work Group v Study Plans - Draft Conceptual Outlines ew Proposed - Fry Sampling at JC Boyle Reaches Study Plan ummary of Info-Investigation of Trout & Anadro. Fish Genetics-Klamath ydro Proj Area (SP 1.17) terature Based Characterization of Resident Fish Entrainment-Turbine duced Mortality - Klamath al Study Plans - Plenary Approved	
math Draft Technical Report - Land and Visual Asthetics - Appendices Would not open math Draft Technical Report - Socioeconomic Resources math Relicensing Study Plans math Study Plans - Complete List by Work Group v Study Plans - Draft Conceptual Outlines ew Proposed - Fry Sampling at JC Boyle Reaches Study Plan ummary of Info-Investigation of Trout & Anadro. Fish Genetics-Klamath ydro Proj Area (SP 1.17) terature Based Characterization of Resident Fish Entrainment-Turbine duced Mortality - Klamath al Study Plans - Plenary Approved 0 Aquatic Resources	
math Draft Technical Report - Land and Visual Asthetics - Appendices Would not open math Draft Technical Report - Socioeconomic Resources math Relicensing Study Plans math Study Plans - Complete List by Work Group v Study Plans - Draft Conceptual Outlines ew Proposed - Fry Sampling at JC Boyle Reaches Study Plan ummary of Info-Investigation of Trout & Anadro. Fish Genetics-Klamath ydro Proj Area (SP 1.17) terature Based Characterization of Resident Fish Entrainment-Turbine duced Mortality - Klamath al Study Plans - Plenary Approved 0 Aquatic Resources 0 Terrestrial Resources	
math Draft Technical Report - Land and Visual Asthetics - Appendices Would not open math Draft Technical Report - Socioeconomic Resources math Relicensing Study Plans math Study Plans - Complete List by Work Group v Study Plans - Draft Conceptual Outlines ew Proposed - Fry Sampling at JC Boyle Reaches Study Plan ummary of Info-Investigation of Trout & Anadro. Fish Genetics-Klamath vdro Proj Area (SP 1.17) terature Based Characterization of Resident Fish Entrainment-Turbine duced Mortality - Klamath al Study Plans - Plenary Approved 0 Aquatic Resources 0 Terrestrial Resources 0 Recreation Resources	
math Draft Technical Report - Land and Visual Asthetics - Appendices Would not open math Draft Technical Report - Socioeconomic Resources math Relicensing Study Plans math Study Plans - Complete List by Work Group v Study Plans - Draft Conceptual Outlines ew Proposed - Fry Sampling at JC Boyle Reaches Study Plan ummary of Info-Investigation of Trout & Anadro. Fish Genetics-Klamath ydro Proj Area (SP 1.17) terature Based Characterization of Resident Fish Entrainment-Turbine duced Mortality - Klamath al Study Plans - Plenary Approved 0 Aquatic Resources 0 Terrestrial Resources 0 Land Use	
math Draft Technical Report - Land and Visual Asthetics - Appendices Would not open math Draft Technical Report - Socioeconomic Resources math Relicensing Study Plans math Study Plans - Complete List by Work Group v Study Plans - Draft Conceptual Outlines ew Proposed - Fry Sampling at JC Boyle Reaches Study Plan ummary of Info-Investigation of Trout & Anadro. Fish Genetics-Klamath ydro Proj Area (SP 1.17) terature Based Characterization of Resident Fish Entrainment-Turbine duced Mortality - Klamath al Study Plans - Plenary Approved 0 Aquatic Resources 0 Terrestrial Resources 0 Land Use 0 Visual Aesthetics	
math Draft Technical Report - Land and Visual Asthetics - Appendices Would not open math Draft Technical Report - Socioeconomic Resources math Relicensing Study Plans math Study Plans - Complete List by Work Group v Study Plans - Draft Conceptual Outlines ew Proposed - Fry Sampling at JC Boyle Reaches Study Plan ummary of Info-Investigation of Trout & Anadro. Fish Genetics-Klamath ydro Proj Area (SP 1.17) terature Based Characterization of Resident Fish Entrainment-Turbine duced Mortality - Klamath al Study Plans - Plenary Approved 0 Aquatic Resources 0 Terrestrial Resources 0 Land Use 0 Visual Aesthetics 0 Socioeconomics	
math Draft Technical Report - Land and Visual Asthetics - Appendices Would not open math Draft Technical Report - Socioeconomic Resources math Relicensing Study Plans math Study Plans - Complete List by Work Group v Study Plans - Draft Conceptual Outlines ew Proposed - Fry Sampling at JC Boyle Reaches Study Plan ummary of Info-Investigation of Trout & Anadro. Fish Genetics-Klamath ydro Proj Area (SP 1.17) terature Based Characterization of Resident Fish Entrainment-Turbine duced Mortality - Klamath al Study Plans - Plenary Approved 0 Aquatic Resources 0 Terrestrial Resources 0 Land Use 0 Visual Aesthetics 0 Socioeconomics icensing Study Plans - Final Working Drafts	
math Draft Technical Report - Land and Visual Asthetics - Appendices Would not open math Draft Technical Report - Socioeconomic Resources math Relicensing Study Plans math Study Plans - Complete List by Work Group v Study Plans - Draft Conceptual Outlines ew Proposed - Fry Sampling at JC Boyle Reaches Study Plan ummary of Info-Investigation of Trout & Anadro. Fish Genetics-Klamath ydro Proj Area (SP 1.17) terature Based Characterization of Resident Fish Entrainment-Turbine duced Mortality - Klamath al Study Plans - Plenary Approved 0 Aquatic Resources 0 Recreation Resources 0 Land Use 0 Visual Aesthetics 0 Socioeconomics icensing Study Plans - Final Working Drafts 7 Evaluation of Ramping Effects on Fish Downstream - August 13, 2003	
math Draft Technical Report - Land and Visual Asthetics - Appendices Would not open math Draft Technical Report - Socioeconomic Resources math Relicensing Study Plans math Study Plans - Complete List by Work Group v Study Plans - Draft Conceptual Outlines ew Proposed - Fry Sampling at JC Boyle Reaches Study Plan ummary of Info-Investigation of Trout & Anadro. Fish Genetics-Klamath vdro Proj Area (SP 1.17) terature Based Characterization of Resident Fish Entrainment-Turbine duced Mortality - Klamath al Study Plans - Plenary Approved 0 Aquatic Resources 0 Recreation Resources 0 Visual Aesthetics 0 Socioeconomics icensing Study Plans - Final Working Drafts 7 Evaluation of Ramping Effects on Fish Downstream - August 13, 2003	
math Draft Technical Report - Land and Visual Asthetics - Appendices Would not open math Draft Technical Report - Socioeconomic Resources math Relicensing Study Plans math Study Plans - Complete List by Work Group v Study Plans - Draft Conceptual Outlines ew Proposed - Fry Sampling at JC Boyle Reaches Study Plan ummary of Info-Investigation of Trout & Anadro. Fish Genetics-Klamath vdro Proj Area (SP 1.17) terature Based Characterization of Resident Fish Entrainment-Turbine duced Mortality - Klamath al Study Plans - Plenary Approved 0 Aquatic Resources 0 Recreation Resources 0 Visual Aesthetics 0 Socioeconomics icensing Study Plans - Final Working Drafts 7 Evaluation of Ramping Effects on Fish Downstream - August 13, 2003 9 Fisheries Assessment - August 2003 9 Fisheries Assessment - Appendix A	
math Draft Technical Report - Land and Visual Asthetics - Appendices Would not open math Draft Technical Report - Socioeconomic Resources math Relicensing Study Plans math Study Plans - Complete List by Work Group v Study Plans - Draft Conceptual Outlines ew Proposed - Fry Sampling at JC Boyle Reaches Study Plan ummary of Info-Investigation of Trout & Anadro. Fish Genetics-Klamath vdro Proj Area (SP 1.17) terature Based Characterization of Resident Fish Entrainment-Turbine duced Mortality - Klamath al Study Plans - Plenary Approved 0 Aquatic Resources 0 Terrestrial Resources 0 Visual Aesthetics 0 Socioeconomics icensing Study Plans - Final Working Drafts 7 Evaluation of Ramping Effects on Fish Downstream - August 13, 2003 9 Fisheries Assessment - August 2003 9 Fisheries Assessment - Appendix A 9 Fisheries Assessment - Appendix A	
math Draft Technical Report - Land and Visual Asthetics - Appendices Would not open math Draft Technical Report - Socioeconomic Resources Imath Relicensing Study Plans math Study Plans - Complete List by Work Group v Study Plans - Draft Conceptual Outlines ew Proposed - Fry Sampling at JC Boyle Reaches Study Plan ummary of Info-Investigation of Trout & Anadro. Fish Genetics-Klamath vdro Proj Area (SP 1.17) terature Based Characterization of Resident Fish Entrainment-Turbine duced Mortality - Klamath al Study Plans - Plenary Approved 0 Aquatic Resources 0 Terrestrial Resources 0 Aquatic Resources 0 Socioeconomics censing Study Plans - Final Working Drafts 7 Evaluation of Ramping Effects on Fish Downstream - August 13, 2003 9 Fisheries Assessment - August 2003 9 Fisheries Assessment - Appendix A 9 Fisheries Assessment - Appendix B 10 Fish Passage Planning and Evaluation - July 2003	
math Draft Technical Report - Land and Visual Asthetics - Appendices Would not open math Draft Technical Report - Socioeconomic Resources math Relicensing Study Plans math Study Plans - Complete List by Work Group v Study Plans - Draft Conceptual Outlines ew Proposed - Fry Sampling at JC Boyle Reaches Study Plan ummary of Info-Investigation of Trout & Anadro. Fish Genetics-Klamath vdro Proj Area (SP 1.17) terature Based Characterization of Resident Fish Entrainment-Turbine duced Mortality - Klamath al Study Plans - Plenary Approved 0 Aquatic Resources 0 Recreation Resources 0 Recreation Resources 0 Visual Aesthetics 0 Socioeconomics icensing Study Plans - Final Working Drafts 7 Evaluation of Ramping Effects on Fish Downstream - August 13, 2003 9 Fisheries Assessment - August 2003 9 Fisheries Assessment - Appendix A 9 Fisheries Assessment - Appendix B 10 Fish Passage Planning and Evaluation - July 2003 10 Klamath Study Plan - Attachment A	
math Draft Technical Report - Land and Visual Asthetics - Appendices Would not open math Draft Technical Report - Socioeconomic Resources math Relicensing Study Plans math Study Plans - Complete List by Work Group v Study Plans - Draft Conceptual Outlines ew Proposed - Fry Sampling at JC Boyle Reaches Study Plan ummary of Info-Investigation of Trout & Anadro. Fish Genetics-Klamath vdro Proj Area (SP 1.17) terature Based Characterization of Resident Fish Entrainment-Turbine duced Mortality - Klamath al Study Plans - Plenary Approved 0 Aquatic Resources 0 Terrestrial Resources 0 Land Use 0 Visual Aesthetics 0 Socioeconomics icensing Study Plans - Final Working Drafts 7 Evaluation of Ramping Effects on Fish Downstream - August 13, 2003 9 Fisheries Assessment - August 2003 9 Fisheries Assessment - Appendix A 9 Fisheries Assessment - Appendix B 10 Klamath Study Plan - Attachment A 10 Klamath Study Plan - Attachment B	
math Draft Technical Report - Land and Visual Asthetics - Appendices Would not open math Draft Technical Report - Socioeconomic Resources math Relicensing Study Plans math Study Plans - Complete List by Work Group v Study Plans - Draft Conceptual Outlines ew Proposed - Fry Sampling at JC Boyle Reaches Study Plan ummary of Info-Investigation of Trout & Anadro. Fish Genetics-Klamath vdro Proj Area (SP 1.17) terature Based Characterization of Resident Fish Entrainment-Turbine duced Mortality - Klamath al Study Plans - Plenary Approved 0 Aquatic Resources 0 Terrestrial Resources 0 Visual Aesthetics 0 Socioeconomics icensing Study Plans - Final Working Drafts 7 Evaluation of Ramping Effects on Fish Downstream - August 13, 2003 9 Fisheries Assessment - Appendix A 9 Fisheries Assessment - Appendix A 9 Fisheries Assessment - Appendix B 10 Klamath Study Plan - Attachment A 10 Klamath Study Plan - Attachment B 10 Klamath Study Plan - Attachment C	
	ntrolled Flow Study creation - Appendix 2G - Add'I Results Hell's Corner Reach Controlled w Study creation - Appendix 2H - Add'I Info from Middle Klamath Phase I Effort creation - Appendix 3A - Rec Survey Questionnaire, Interview, and unt Forms creation - Appendix 3B - FERC Form 80 creation - Appendix 4A - Question Form for Reg'I Rec oviders/Managers creation - Appendix 5A - Recreation Site Inventory and Condition Forms creation - Appendix 5B - Developed Recreation Site Photographs creation - Appendix 5C - Developed Recreation Site Plans creation - Appendix 5D - Dispersed Recreation Site Plans creation - Appendix 5E - Completed Inventory and Conditions Forms for veloped and Dispersed creation - Appendix 6A - Draft Annotated Outline Rec Resource Mgmt in

	1.12 Instream Flow Analysis Study Plan Appendices - August 2003	
ľ	1.16 Evaluation of Effects of Flow Fluctuation on Aquatic Resources w/in	
	J.C. Boyle Peaking Reach	
	1.18 Description of Migratory Behavior of Juvenile Salmon Smolts - July	
	2003	
	1.22 Analysis Of Potential Klamath Hydro Project Effects On Water Quality	
-	Aesthetics- August 2003	
╞	1.25 Sampling of Fishenes III Froject - July 2005	
	3.1 Recreation Flow Analyses – Phase II	
	7.2 High Level Socioeconomic Analysis of the Landscape Options–Phase 2	
-	- April 2005 7.3 Analysis of Effects of Differences Retween Proposed and Current Proj	
	on Socio Environ - Phase 3	
F	Jamath Relicensing Meeting Dates and Summaries	
	Aaster Schedule for Klamath Meetings	
	quatics Work Group Meeting Summaries and Presentations	
4		
	09-27-01 Summary	
	02-21-02 Summary	
	03-08-02 Summary	
	04-04-02 Summary	
	05-09-02 Summary	
Ī	06-05-02 Summary	
	07-10-02 Summary	
-	08-06-02 Summary	
-	09-03-02 Summary	
┝	10-09-02 Summary	
┝	11 05 02 Summary	
-	12.05-02 Summary	
╞		
ļ	01-07-03 Summary	
	02-05-03 Summary	
ļ	Mollusks Study for Aquatics Meeting 2-5-03	
╞	03-04-03 Summary	
┝	04-08-03 Summary	
┝	05-06-03 Meeting Summary	
┢	06-03-03 Meeting Summary	
ŀ	06-03-03 Presentation: Overview of Approach to Fish Resources Analysis	
	for the FERC Application	
	06-04-03 Meeting Summary	
	06-06-03 HSC Presentation - Approach to Instream Flow Analysis and	
	Integration	
╞	08-06-03 Meeting Summary	
╞	08-06-03 Presentation: Peaking Reach Fish Stranding Observations	
┝	09-10-03 Summary 00-10-811-02 Handout Characterization of Resident Fish Entrainment	
	&Turbine Induced Mortality	
┢	09-10-03 Presentation - Movement of Rainbow Trout in the Klamath River	
	(SP 1.15)	
ľ	09-10-03 Presentation - Geomorphology	
	09-10-03 Presentation - Flows and Recreation - September 2003	
	10-07-03 Summary	
Ļ	11-04-03 Presentation - Trout Comparison - November 2003	
	11-04-03 Presentation - Geomorphology Study Sediment Transport	

	2002-2003 Upper Klamath HSC for Rainbow Trout Using Alternative	
	Curve-Fitting Methodologies	
	Initial analysis of Rainbow Trout Use and Availability of Cover in the	
	Peaking and Bypass Reaches	
_	Analysis of Rainbow Trout Spawning in the Bypass Reach	
(Cultural Work Group Meeting Summaries	
	Fish Passage Work Group Meeting Summaries	
	08-08-01 Summary	
	10-11,12-01 Summary	
	01-29-02 Meeting Summary	
	03-06-02 Summary	
	04-03-02 Summary	
	06-04-02 Summary	
	07-09-02 Summary	
	08-07-02 Summary	
	09-04-02 Summary	
	10-10-02 Summary	
	11-06-02 Meeting Summary	
	12-04-02 Summary	
	02-06-03 Summary	
	03-05&06-03 Summary	
	04-09-03 Summary	
	05-05-03 Meeting Summary	
	06-05-03 Meeting Summary	
	08-07-03 Meeting Summary	
	09-11-03 Summary	
_	10-08-03 Summary	
	Plenary Group Meeting Summaries	
	NEW! Klamath - Approach to Woodeling Analysis and Integration	
	05-06-02 (Day 1) Meeting Summary	
		1
	06-03-02 Summary	1
	07-08-02 Summary	1
	08-08-02 Summary	
	19-05-02 Plenary Meeting Summary	
	10-11-02 Summary	1
	12.06.02 Maating Summany	
	12-06-02 Meeting Summary	1
	01-06-03 Summary	
	02-06-03 Summary	
	03-06-03 Summary	
	04-10-03 Summany	
	05-06-03 Meeting Summary	
	00-00-05 Meeting Summary	
	10-12-03 Summary	
Г	Decreation Land Les Vieuel Meeting Summaries	
Ľ	11 16 02 Summary	
	06 05 02 Summary	
	00-00-02 Summary	
	07-03-02 Summary	
	10-00-02 Summary	
	12-03-02 Summary	
	U4-U8-U3 SUMMARY	
Ŀ	Socioeconomics work Group Meeting Summaries	
	04-17-02 Summary	

	06-05-02 Summary	
	07-11-02 Summary	
	08-06-02 Summary	
	09-04-02 Summary	
	10-09-02 Summary	
	11-12-02 Summary	
	03-06-03 Summary	
	04-10-03 Summary	
	05-06-03 Meeting Summary	
	06-03-03 Meeting Summary	
	08-07-03 Summary	
	10-10-03 Summary	
	Stakeholder Meeting Summaries	
	12-06-01 Summary	
-	Terrestrial Work Group Meeting Summaries-Handouts-Maps	
	12-12-01 Summary	
	01-17-02 Summary	
	1-31-02 Riparian Conference Call	
	03-28-02 Summary	
	3-28-02 Terrestrial Meeting Handouts	
	04-24-02 Summary	
	04-24-02 Meeting Agenda and Handouts	
	06-06-02 Summary	
	11-08-02 Summary	
	11-08-02 Handouts	
	12-10-02 Summary	
	12-10-02 Handouts	
	02-04-03 Maps	
	06-24-03 Meeting Summaries-Handouts-Maps	
	08-05-03 Summary	
	08-05-03 Meeting Summary- Handouts	
r	10-10-03 Meeting Summary- Handouts	
	Water Quality Work Group Meeting Summaries and Presentations	
	WQ System Model Calibration Presentation 12-03-02	
	WQ Full Flow Presentation 12-03-02	
	09-26-01 Summary	
	01-30-02 Meeting Summary	
	03-05-02 Meeting Summary	
	04-02-02 Summary	
	05-08-02 Summary	
	06-06-02 Summary	
	07-11-02 Summary	
	Presentation: Klamath System Bathymetry and Sediment Classification,	
	Fall 2002	
	08-05-02 Meeting Summary	
	10.09.02 Meeting Summary	
	10-08-02 Meeting Summary	
	12 02 02 Summary	
	12-03-02 Summary	
	02-07-03 Summary	
	0.03-0.03 Summary 0.04-0.03 Meeting Summary	
	06-02-03 Meeting Summary	
	Klamath River Flow and WO Modeling Presentation 6-2-03	
	Klamath River WO Studies Presentation 8-4-03	
	09-09-03 Summary	
	09-09-03 WQ Meeting Handout - WQ Modeling Status Report (SP 1 3)	
	to be to the moding handour the modeling blatts report (or 1.0)	

	09-09-03 WQ Presentation to Work Group	
	10-06-03 Summary	
	10-06-03 Hydrology Presentation (SP 1.4) to Work Group	
	11-03-03 Presentation-Spring 2003 Macroinvertebrate&BiValve Study	
	Results (S.P. 1.19 & S.P. 1.20)	
	11-03-03 WQ Modeling Presentation	
	Klamath WQ Modeling Master Documentation 11-14-03	
	WQ Modeling Update Presentation - December 2003	
	Klamath WQ Modeling Master Appendices 11-14-03	
	Klamath Relicensing Documents	
-	Lamprov Workshop Notes April 11, 2003	
	Lamprey Workshop Presentation April 11, 2003	
	Fish Dassage Technical Memos	
	Tochnical Mama 6 I.C. Boyle Fish Dassage Eacilities	
	Klamath Einal Tochnical Poporte	
	Proliminary Draft Final Technical Poperte	
	Klemeth Belicensing Study Status Benerts - October 2002	
	Klamath Balicensing Callaborative Process Protocol _ ZUUZ	
	Klamath Relicensing Collaborative Process Protocol - FinAL	
	Riamatin Project Facilities and Operations Report	
	Phase T Recreation Report - June 2002	
	Fish Passage Options Assessment Stakeholder Letter	
	Reach WQ Summaries - Draft	
	Copco Bypass Reach WQ Summary (Draft)	
	Copco Reservoir Reach WQ Summary (Draft)	
	Iron Gate Reservoir Reach WQ Summary (Draft)	
	J.C. Boyle Bypass Reach WQ Summary (Draπ)	
	J.C. Boyle Full-Flow Reach WQ Summary (Draft)	
	J.C. Boyle Reservoir Reach WQ Summary (Draπ)	
	Keno River Reach WQ Summary (Draπ)	
	Kiamath River Below IG Dam Reach WQ Summary (Draft)	
	Lake Ewauna/Keno Reservoir WQ Summary (Draft)	
	Link River Reach WQ Summary (Draft)	
	Summary of First Stage Consultation Document Comments and Responses	
	Aquatic Issues	
	Land Use Issues	
	Project Operation and Hydrology/Channel Morphology Issues	
	Recreation Issues	
	lerrestrial Issues	
	Visual Resources Issues	
	Water Quality Issues	
	First Stage Consultation Document	
	First Stage Consultation Document	
	First Stage Consultation Document Appendices	
	Notice of Intent to Relicense Klamath River Projects	
	Klamath Biological Opinion - USFWS 1996	
	Klamath Biological Opinion - USFWS 1996	
	Klamath Relicensing Presentation	
	Klamath Relicensing Resource Reports	
_	Bathymetry and Sediment Classification Report Final - April 2003	
_	Entrainment Information - Klamath Relicensing	
	Literature Based Characterization of Resident Fish Entrainment-Turbine	
	Induced Mortality - Klamath	
	Klamath Hydro Fish Salvage Info - February 2003	
	Klamath Fish Salvage Data - February 2003	
	Link River Hydroelectric Project Final Entrainment Study Report, Sept.	

2000	
Lamprey Entrainment Data at Eastside/Westside 1997-1999	
PGE Pit 4 Fish Entrainment Sampling - Final Report March 23, 2001 - Final	
Species Count for Fish Sampled at Klamath Hydro Project - 1998 and 1999	
Klamath Fish Assessment Data (Provisional) - Spring 2002	
Fish Assessment Data (Provisional) - Summer 2002	
Fish Assessment Data (Provisional) - Fall 2002	
New Report - Water Quality Database	
Klamath River WQ Monitoring Program - July 2002	
Klamath River WQ Grab Sampling SOP - July 2002	
Fish Passage Conditions on the Upper Klamath River, July 2000	
OSU Resident Fish Data 1999	
OSU Resident Fish Data 1998	
Distribution and Biology of Suckers in Lower Klamath Reservoirs, March	
2000	
Ceratomyxa Shasta Fact Sheet - 2002	
Fisheries-Optimal Stock Size & Harvest Rate in Multistage Life History	
Models	
Klamath Relicensing Contacts Lists	
Klamath Consultation List	
Klamath Plenary Group - Updated 01-14-03	
Klamath Consultants List	

Appendix B: Model Checklist for CE-QUAL-W2

The model setup and model files for the CE-QUAL-W2 models were evaluated for appropriateness and whether the model was setup accurately. Two simulation years were evaluated, 2000 and 2001, but only two scenarios were evaluated, Existing Conditions and Steady Flow since the No Project scenario did not use CE-QULA-W2. There were four reservoir systems reviewed and these include: Lake Ewauna, J. C. Boyle Reservoir, Copco Reservoir and Iron Gate Reservoir.

Most model evaluations were coarse based on visually examining the models files with a random number of files plotted. In the model file evaluation summaries below, there is a field called "Errors (Yes/No)? Yes and No values in this field reflect only the coarse evaluations of these model files, examining for obvious errors in the files. Further analyses would be required to determine if there are any errors from model file development methodologies.

The model files were not compared with the report: <u>Klamath River Modeling Framework to Support the</u> <u>PacifiCorp Federal Energy Regulatory Commission Hydropower Relicensing Application</u>, Draft 11-14-2003, prepared for PacifiCorp, by Watercourse Engineering, Inc. In some cases there were plots of flow or temperature in the report, which could have been compared with plots of the model files, but this analysis was not conducted. Water quality data provided in the report was often provided as a table and this information was not compared to the model files. The main focus of this review was to evaluate the model development and files for general appropriateness.

Model Water body: Lake Ewauna to Keno Dam Model year:

Scenario:

Existing Conditions

Model Boundary Conditions

Tributaries

Nomos		Frequency	Free group and MO		Notos
Names	Frequency Q	remp	Frequency wQ	Errors? (Tes/NO)	Notes
Link River (USBC)	Daily	Hourly	Hourly	No	qin_Ir00.npt, USGS Gage 11507500 and PacifiCorp West Turbine Gage, Temp: Link River Reach EC 2000 results, WQ: Link River reachEC 2000 results, most constituents are fairly constant
Klamath Falls Wastewater Treatment Plant	Daily	Daily	14 values/constant	No	qtr_wt00.npt, constant except DO
South Suburban Sanitation District	Monthly	Monthly	Monthly	No	qtr_ss00.npt
Columbia Plywood	Monthly	Monthly	constant	No	qtr_cp00.npt, Q constant, Temp: constant, WQ: constant, 2000 data from Columbia Plywood Monitoring Reports and 1992 Base Case Estimates
Lost River Diversion	Daily	semi-monthly (21)	21 values	No	qtr_ld00.npt, Q: PacifiCorp / USBR Gage, Temp: Wilson Reservoir USBR data, WQ: Wilson Reservoir USBR records, 2002 BOD USBR data and 1992 base case CTRfile, ALK is high, 200+
Collins Forest Products #1	Daily	Daily	14 values	No	qtr_cf00.npt
Collins Forest Products #2	Daily	Daily	14 values	No	qtr_cf200.npt
Klamath Straits Drain	Daily	Daily	14 values	Yes, Temp at zero	qtr_ks00.npt, Temp: USBR?, WQ: Estimated from grab and sonde data recorded by USBR and PacifiCorp and 1992 basecase CTR file, ALK high, 200+
Stormwater Runoff #1	Daily	Constant	14 values/constant	ALK was 200+?	qtr_0100.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input, constant except TIC and ALK, ALK high, 200+
Stormwater Runoff #2	Daily	Constant	14 values/constant	ALK was 200+?	qtr_0200.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input, constant except TIC and ALK, ALK high, 200+
Stormwater Runoff #3	Daily	Constant	14 values/constant	ALK was 200+?	qtr_0300.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input, constant except TIC and ALK, ALK high, 200+

2000

Stormwater Runoff #4	Daily	Constant	14 values/constant	ALK was 200+?	qtr_0400.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input, constant except TIC and ALK, ALK high, 200+
Stormwater Runoff #5	Daily	Constant	14 values/constant	ALK was 200+?	qtr_0500.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input, constant except TIC and ALK, ALK high, 200+
Stormwater Runoff #6	Daily	Constant	14 values/constant	ALK was 200+?	qtr_0600.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input, constant except TIC and ALK, ALK high, 200+
Stormwater Runoff #7	Daily	Constant	14 values/constant	ALK was 200+?	qtr_0700.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input, constant except TIC and ALK, ALK high, 200+
Stormwater Runoff #8	Daily	Constant	14 values/constant	ALK was 200+?	qtr_0800.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input, constant except TIC and ALK, ALK high, 200+
Stormwater Runoff #9	Daily	Constant	14 values/constant	ALK was 200+?	qtr_0900.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input, constant except TIC and ALK, ALK high, 200+
Stormwater Runoff #10	Daily	Constant	14 values/constant	ALK was 200+?	qtr_1000.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input, constant except TIC and ALK, ALK high, 200+
Stormwater Runoff #11	Daily	Constant	14 values/constant	ALK was 200+?	qtr_1100.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input, constant except TIC and ALK, ALK high, 200+
Point Source Accretion #2	Daily	Constant	6 values	No	qacc_0200.npt, 2000 A/D calculations from 2000 water balance(1/4 of accretion part only), Temp: constant at 12C, WQ: Conc for QDT, GW input created from 1992 Base case file on 01-05-04 by ES
Point Source Accretion #3	Daily	Constant	6 values	No	qacc_0300.npt, 2000 A/D calculations from 2000 water balance(1/4 of accretion part only), Temp: constant at 12C, GW input created from 1992 Base case file on 01-05-04 by ES
Point Source Accretion #4	Daily	Constant	6 values	No	qacc_0400.npt, 2000 A/D calculations from 2000 water balance(1/4 of accretion part only), Temp: constant at 12C, GW input created from 1992 Base case file on 01-05-04 by ES
Point Source Accretion #7	Daily	Constant	6 values	No	qacc_0700.npt, 2000 A/D calculations from 2000 water balance(1/4 of accretion part only), Temp: constant at 12C, GW input created from 1992 Base case file on 01-05-04 by ES

Withdrawals
Names	Frequency Q
LD	daily
NC	daily
AD	daily
#2	daily
#3	daily
#4	daily
#7	daily

Errors? (Yes/No)	Notes
No	qwd.npt
No	qwd.npt
No	qwd.npt
No	qwd.npt
No	qwd.npt
No	qwd.npt
No	qwd.npt

Operations

Names	Frequency Q	Errors? (Yes/No)	Notes
Lake Ewauna Dam outflow	Hourly	No	qou_ke00mod.npt, Modified from USGS Gage 11509500 Keno Dam, 1 flow pathway

Meteorological Data

Name	Parameter	Frequency	Completeness (Yes/No)	; Errors? (Yes/No)	Notes
met_00.npt	Air Temp	hourly	Yes	No	
	Dew Point Temp	hourly	Yes	No	
	Wind Spd	hourly	Yes	No	Measurement increment seems to change in data set
	Wind Dir	hourly	Yes	No	Wind direction is primarily from 270-335 deg and 145 to 175 deg, grid orientation is primarily 15 to 65 deg
	Cloud Cover	hourly	Yes	No	Constant for day, 0 to 8, unlcear how it was developed
	Solar Rad.	hourly	Yes	Yes	Jday 230.417 had Solar at 3810.802, Additional errors from 230.458 to 230.542 & 256.50

Preprocessor

		Pre.opt,	
		Reasonableness?	
		(Yes/No) (No	
		kinetic	
Warnings Notes	Error Notes	coefficients)	Notes
Epiphyton growth rate [EG=0.001] <	Bottom selective withdrawal layer	No interpolation for	WSC set to 1.0 for whole simulation, Model uses static

0.1 for epiphyton group 1	[KBWD=11] > bottom active layer [KB=8] for withdrawal 2	tributaries, No water balance flows distributed	shading at 100% full solar, Particulate organic matter was turned off for all tributaries and USBC, but simulated
Epiphyton mortality to POM fraction [EPOM=0.000] < 0.5 for epiphyton group 1			
Oxygen to algal respiration stoichiometry [O2AR=1.400] /= 1.1 for algal group1			
Oxygen to algal production stoichiometry [O2AG=1.500] /= 1.4 for algal group1			
Oxygen to epiphyton production stoichiometry [O2EG=1.400] /= 1.4 for epiphyton group1			

Bathymetry Editor

	Phi, Corre		DLX, Reason	Overall Reasonabl eness?	
File Names	ct?	DZ, Reasonable?	able?	(Yes/No)	Notes
			Yes,		
			243.8 to		
bthy3.npt	Yes	Yes, 0.61 m	600 m	Yes	

Does it Run? (Yes/No)	Errors? (Yes/No)	Notes
Yes	No	Ran model from Jday 1 to 209

Model Water body: Lake Ewauna to Keno Dam Model year: 200)1

Existing Conditions

Scenario: Model Boundary Conditions

Tributaries

		Frequency		Errors?	
Names	Frequency Q	Temp	Frequency WQ	(Yes/No)	Notes
Link River (USBC)	Daily	Hourly	Hourly	No	qin_Ir01.npt, USGS Gage 11507500 and PacifiCorp West Turbine Gage, Temp: Link River Reach EC 2001 results, WQ: Link River reach EC 2001 results, most constituents are fairly constant
Klamath Falls Wastewater Treatment Plant	Daily	Daily	14 values/constant	No	qtr_wt01.npt, constant except DO, CBOD, Coliform, and SS
South Suburban Sanitation District	Monthly	Monthly	Monthly	No	qtr_ss01.npt
Columbia Plywood	Monthly	Monthly	Semi-monthly, 14 values, constant	No	qtr_cp01.npt, Q constant, Temp: constant, WQ: constant, 2000 data from Columbia Plywood Monitoring Reports and 1992 Base Case Estimates
Lost River Diversion	Daily	Monthly	Semi-monthly, 16 values	No	qtr_ld01.npt, Q: PacifiCorp / USBR Gage, Temp: Wilson Reservoir USBR data, WQ: Wilson Reservoir USBR records, 2002 BOD USBR data and 1992 base case CTRfile, ALK is high, 100+
Collins Forest Products #1	Daily	Daily	14 values	No	qtr_cf01.npt, WQ: constant except CBOD and SS
Collins Forest Products #2	Daily	Daily	14 values	No	qtr_cf201.npt, WQ: CBOD constant except CBOD, SS and Coliform
Klamath Straits Drain	Daily	Daily	Semi-monthly, 16 values	Yes, Temp at zero	qtr_ks01.npt, Q: Q: PacifiCorp / USBR Gage, Temp: USBR?, WQ: Estimated from grab and sonde data recorded by USBR and PacifiCorp and 1992 basecase CT R file, ALK high, 100+
Stormwater Runoff #1	Daily	Constant	6 values/constant	No	qtr_0101.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input
Stormwater Runoff #2	Daily	Constant	6 values/constant	No	qtr_0201.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input
Stormwater Runoff #3	Daily, Same as #3, 7, 11	Constant	6 values/constant	No	qtr_0301.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input
Stormwater Runoff #4	Daily, Same as #4, 5, 6, 8, 9, 10	Constant	6 values/constant	No	qtr_0401.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input

Stormwater Runoff #5	Daily, Same as #4, 5, 6, 8, 9, 10	Constant	6 values/constant	No	qtr_0501.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input
Stormwater Runoff #6	Daily, Same as #4, 5, 6, 8, 9, 10	Constant	6 values/constant	No	qtr_0601.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input
Stormwater Runoff #7	Daily, Same as #3, 7, 11	Constant	6 values/constant	No	qtr_0701.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input
Stormwater Runoff #8	Daily, Same as #4, 5, 6, 8, 9, 10	Constant	6 values/constant	No	qtr_0801.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input
Stormwater Runoff #9	Daily, Same as #4, 5, 6, 8, 9, 10	Constant	6 values/constant	No	qtr_0901.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input
Stormwater Runoff #10	Daily, Same as #4, 5, 6, 8, 9, 10	Constant	6 values/constant	No	qtr_1001.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input
Stormwater Runoff #11	Daily, Same as #3, 7, 11	Constant	6 values/constant	No	qtr_1101.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input
Point Source Accretion #2	Daily	Constant	6 values/constant	No	qacc_0201.npt, 2001 A/D calculations from 2001 water balance(1/4 of accretion part only), Temp: constant at 12C, Created from TDT_BR1 for 1992 Base case, WQ: Conc for QDT GW input created from 1992 Base case file on 10-18-02
Point Source Accretion #3	Daily	Constant	6 values/constant	No	qacc_0301.npt, 2001 A/D calculations from 2001 water balance(1/4 of accretion part only), Temp: constant at 12C, Created from TDT_BR1 for 1992 Base case, WQ: Conc for QDT GW input created from 1992 Base case file on 10-18-02
Point Source Accretion #4	Daily	Constant	6 values/constant	No	qacc_0401.npt, 2001 A/D calculations from 2001 water balance(1/4 of accretion part only), Temp: constant at 12C, Created from TDT_BR1 for 1992 Base case, WQ: Conc for QDT GW input created from 1992 Base case file on 10-18-02
Point Source Accretion #7	Daily	Constant	6 values/constant	No	qacc_0701.npt, 2001 A/D calculations from 2001 water balance(1/4 of accretion part only), Temp: constant at 12C, Created from TDT_BR1 for 1992 Base case, WQ: Conc for QDT GW input created from 1992 Base case file on 10-18-02

Withdrawals

Names	Frequency Q
LD	daily
NC	daily

Errors? (Yes/No)	Notes
No	qwd_01.npt
No	qwd_01.npt

AD	daily
#2	daily
#3	daily
#4	daily
#7	daily

Operations

Names	Frequency Q			
Lake Ewauna Dam				
outflow	Hourly			

No	qwd_01.npt
No	qwd_01.npt
No	qwd_01.npt
No	qwd_01.npt
No	qwd_01.npt

Errors?

(Yes/No)	Notes					
No	qou_ke01mod.npt, Modified from USGS Gage 11509500 Keno Dam, 1 flow pathway					

Name	Parameter	Frequency	Completeness (Yes/No)	Errors? (Yes/No)	Notes
met_01.npt	Air Temp	hourly	Yes	No	
	Dew Point Temp	hourly	Yes	No	
	Wind Spd	hourly	Yes	No	Measurement increment seems to change in data set
	Wind Dir	hourly	Yes	No	Wind direction is primarily from 280-340 deg and 145 to 175 deg, grid orientation is primarily 15 to 65 deg
	Cloud Cover	hourly	Yes	No	Constant for day, 0 to 9, unlcear how it was developed
	Solar Rad.	hourly	Yes	Yes	Solar radaition appears to be about 5% higher than in 2000

Meteorological Data

Preprocessor

Warnings Notes	Error Notes	Pre.opt, Reasonablen ess? (Yes/No) (No kinetic coefficients)	Notes
Epiphyton growth rate [EG=0.001] < 0.1 for epiphyton group 1	Bottom selective withdrawal layer [KBWD=11] > bottom active layer [KB=8] for withdrawal 2	No interpolation for tributaries, No water balance flows distributed	WSC set to 1.0 for whole simulation, Model uses static shading at 100% full solar, Particulate organic matter was turned off for all tributaries and USBC, but simulated
Epiphyton mortality to POM fraction [EPOM=0.000] < 0.5 for epiphyton group 1			
Oxygen to algal respiration stoichiometry [O2AR=1.400] /= 1.1 for algal group1			
Oxygen to algal production stoichiometry [O2AG=1.500] /= 1.4 for algal group1			
Oxygen to epiphyton production stoichiometry [O2EG=1.400] /= 1.4 for epiphyton group1			

Bathymetry Editor

	Overall				
	Phi,		Reasonablen		
	Corre	DZ,	DLX,	ess?	
File Names	ct?	Reasonable?	Reasonable?	(Yes/No)	Notes
			Yes, 243.8 to		
bthy3.npt	Yes	Yes, 0.61 m	600 m	Yes	

Does it Run? (Yes/No)	Errors? (Yes/No)	Notes
Yes	No	Ran model from Jday 1 to 3, no difference
		between control file for 2000 and 2001 for
		Exisiting condition

Model Water body:	Lake Ewauna to Keno Dam	Model year:	2000	
Scenario:	Steady Flow			
Model Boundary	· · · ·			

Conditions

Tributaries

Names	Frequency Q	Frequency Temp	Frequency WQ	Errors? (Yes/No)	Notes
Link River (USBC)	Daily	Hourly	Hourly	No	qin_Ir00.npt, Q: Calculated Flow from SS Flow Sheet, Temp: Link River Reach SF 2000 results, WQ: Link River Reach SF 2000 results - wq realtivly constant
Klamath Falls Wastewater Treatment Plant	Daily/ Same as EC	Daily/ Same as EC	14 values/constant/ Same as EC	No	qtr_wt00.npt, constant except DO
South Suburban Sanitation District	Monthly/ Same as EC	Monthly/ Same as EC	Monthly/ Same as EC	No	qtr_ss00.npt
Columbia Plywood	Monthly/ Same as EC	Monthly/ Same as EC	14 values/constant/ Same as EC	No	qtr_cp00.npt, Q constant, Temp: constant, WQ: constant, 2000 data from Columbia Plywood Monitoring Reports and 1992 Base Case Estimates
Lost River Diversion	Daily/ Same as EC	semi-monthly (21)/ Same as EC	18 values/ Same as EC except missing three values	WQ: Missing three values compared to EC	qtr_ld00.npt, Q: PacifiCorp / USBR Gage, Temp: Wilson Reservoir USBR data, WQ: Wilson Reservoir USBR records, 2002 BOD USBR data and 1992 base case CTRfile, ALK is high, 200+
Collins Forest Products #1	Daily/ Same as EC	Daily/ Same as EC	14 values/constant/ Same as EC	No	qtr_cf00.npt
Collins Forest Products #2	Daily/ Same as EC	Daily/ Same as EC	14 values/constant/ Same as EC	No	qtr_cf200.npt
Klamath Straits Drain	Daily/ Same as EC	Daily/ Same as EC	14 values/constant/ Same as EC	Yes, Temp at zero	qtr_ks00.npt, Temp: USBR?, WQ: Estimated from grab and sonde data recorded by USBR and PacifiCorp and 1992 basecase CT R file, ALK high, 200+
Stormwater Runoff #1	Daily/ Same as EC	Constant/ Same as EC	6 values/constant	ALK was 200+?	qtr_0100.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input, constant except TIC and ALK, ALK high, 200+
Stormwater Runoff #2	Daily/ Same as EC	Constant/ Same as EC	6 values/constant	ALK was 200+?	qtr_0200.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case

					Model Input, constant except TIC and ALK, ALK high, 200+
Stormwater Runoff #3	Daily/ Same as EC	Constant/ Same as EC	6 values/constant	ALK was 200+?	qtr_0300.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input, constant except TIC and ALK, ALK high, 200+
Stormwater Runoff #4	Daily/ Same as EC	Constant/ Same as EC	6 values/constant	ALK was 200+?	qtr_0400.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input, constant except TIC and ALK, ALK high, 200+
Stormwater Runoff #5	Daily/ Same as EC	Constant/ Same as EC	6 values/constant	ALK was 200+?	qtr_0500.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input, constant except TIC and ALK, ALK high, 200+
Stormwater Runoff #6	Daily/ Same as EC	Constant/ Same as EC	6 values/constant	ALK was 200+?	qtr_0600.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input, constant except TIC and ALK, ALK high, 200+
Stormwater Runoff #7	Daily/ Same as EC	Constant/ Same as EC	6 values/constant	ALK was 200+?	qtr_0700.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input, constant except TIC and ALK, ALK high, 200+
Stormwater Runoff #8	Daily/ Same as EC	Constant/ Same as EC	6 values/constant	ALK was 200+?	qtr_0800.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input, constant except TIC and ALK, ALK high, 200+
Stormwater Runoff #9	Daily/ Same as EC	Constant/ Same as EC	6 values/constant	ALK was 200+?	qtr_0900.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input, constant except TIC and ALK, ALK high, 200+
Stormwater Runoff #10	Daily/ Same as EC	Constant/ Same as EC	6 values/constant	ALK was 200+?	qtr_1000.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input, constant except TIC and ALK, ALK high, 200+
Stormwater Runoff #11	Daily/ Same as EC	Constant/ Same as EC	6 values/constant	ALK was 200+?	qtr_1100.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input, constant except TIC and ALK, ALK high, 200+
Point Source Accretion #2	Daily	Constant	6 values	No	qacc_0200.npt, 2000 A/D calculations from 2000 water balance(1/4 of accretion part only), Temp: constant at 12C, WQ: Conc for QDT, GW input created from 1992 Base

					case file on 01-05-04 by ES
Point Source Accretion #3	Daily	Constant	6 values	No	qacc_0300.npt, 2000 A/D calculations from 2000 water balance(1/4 of accretion part only), Temp: constant at 12C, WQ: Conc for QDT, GW input created from 1992 Base case file on 01-05-04 by ES
Point Source Accretion #4	Daily	Constant	6 values	No	qacc_0400.npt, 2000 A/D calculations from 2000 water balance(1/4 of accretion part only), Temp: constant at 12C, WQ: Conc for QDT, GW input created from 1992 Base case file on 01-05-04 by ES
Point Source Accretion #7	Daily	Constant	6 values	No	qacc_0700.npt, 2000 A/D calculations from 2000 water balance(1/4 of accretion part only), Temp: constant at 12C, WQ: Conc for QDT, GW input created from 1992 Base case file on 01-05-04 by ES

Withdrawals

Names	Frequency Q
LD	daily
NC	daily
AD	daily
#2	daily
#3	daily
#4	daily
#7	daily

Operations

Names	Frequency Q
Lake Ewauna Dam	
outflow	Daily

Errors? (Yes/No)	Notes
No	qwd.npt, not very steady
No	qwd.npt, not very steady
No	qwd.npt, not very steady
No	qwd.npt, not very steady
No	qwd.npt, not very steady
No	qwd.npt, not very steady
No	qwd.npt, not very steady

Errors? (Yes/No)	Notes
No	SS Flow Calculation Sheet, not very steady
	Ave: 42.71
	stdev: 25.83
	median: 31.12
	min: 9.61

Meteorological Data

Name	Parameter	Frequency	Completeness (Yes/No)	Errors? (Yes/No)	Notes
met_00.npt	Air Temp	hourly	Yes	No	
same as Existing Condition	Dew Point Temp	hourly	Yes	No	
	Wind Spd	hourly	Yes	No	Measurement increment seems to change in data set
	Wind Dir	hourly	Yes	No	Wind direction is primarily from 270-335 deg and 145 to 175 deg, grid orientation is primarily 15 to 65 deg
	Cloud Cover	hourly	Yes	No	Constant for day, 0 to 8, unlcear how it was developed
	Solar Rad.	hourly	Yes	Yes	Jday 230.417 had Solar at 3810.802, Additional errors from 230.458 to 230.542 & 256.50

Preprocessor

Pre.opt, Reasonablen ess? (Yes/No) (No kinetic

		(NO KINETIC	
Warnings Notes	Error Notes	coefficients)	Notes
Epiphyton growth rate [EG=0.001] < 0.1 for epiphyton group 1	Bottom selective withdrawal layer [KBWD=11] > bottom active layer [KB=8] for withdrawal 2	No interpolation for tributaries	WSC set to 1.0 for whole simulation, Model uses static shading at 100% full solar, Particulate organic matter was turned off for all tributaries and USBC, but simulated
Epiphyton mortality to POM fraction [EPOM=0.000] < 0.5 for epiphyton group 1			
Oxygen to algal respiration stoichiometry [O2AR=1.400] /= 1.1 for algal group1			
Oxygen to algal production stoichiometry [O2AG=1.500] /= 1.4 for algal group1			
Oxygen to epiphyton production stoichiometry [O2EG=1.400] /= 1.4 for epiphyton group1			

Bathymetry Editor

	Phi,		DLX,	Overall	
	Corr		Reasona	Reasonableness?	
File Names	ect?	DZ, Reasonable?	ble?	(Yes/No)	Notes
			Yes,		
			243.8 to		
bthy3.npt	Yes	Yes, 0.61 m	600 m	Yes	Same as Existing Condition

Does it Run? (Yes/No)	Errors? (Yes/No)	Notes
Yes	No	Ran model from Jday 1 to 12,
		, control file same as Existing
		condition for 2000

Model Water body:	Lake Ewauna to h	Keno Dam	Model year:	2001	
Scenario:	Steady Flo	w			
Model Boundary Conditions	<u> </u>		-		
Tributaries					
		Frequency			
Names	Frequency Q	Temp	Frequency WQ	Errors? (Yes/No)	Notes

Names	Frequency Q	Temp	Frequency WQ	Errors? (Yes/No)	Notes
Link River (USBC)	Daily	Hourly	Hourly	No	qin_Ir01.npt, 2001 SF Link Dam calculated release + calculated East and West Turbine, Temp: Link River Reach EC 2001 results, WQ: Link River reach EC 2001 results, most constituents are fairly constant
Klamath Falls Wastewater Treatment Plant	Daily/ Same as EC	Daily/ Same as EC	14 values/constant/ Same as EC	No	qtr_wt01.npt, constant except DO, CBOD, Coliform, and SS
South Suburban Sanitation District	Monthly/ Same as EC	Monthly/ Same as EC	Monthly	Yes	qtr_ss01.npt, WQ: Same as Existing condition except TIC is 1/1000 of EC
Columbia Plywood	Monthly/ Same as EC	Monthly/ Same as EC	Semi-monthly, 14 values, constant/ Same as EC	No	qtr_cp01.npt, Q constant, Temp: constant, WQ: constant, 2000 data from Columbia Plywood Monitoring Reports and 1992 Base Case Estimates
Lost River Diversion	Daily/ Same as EC	Monthly/ Same as EC	Semi-monthly, 16 values/ Same as EC	No	qtr_ld01.npt, Q: PacifiCorp / USBR Gage, Temp: Wilson Reservoir USBR data, WQ: Wilson Reservoir USBR records, 2002 BOD USBR data and 1992 base case CTRfile, ALK is high, 100+
Collins Forest Products #1	Daily/ Same as EC	Daily/ Same as EC	14 values/ Same as EC	No	<pre>qtr_cf01.npt, WQ: constant except CBOD and SS</pre>
Collins Forest Products #2	Daily/ Same as EC	Daily/ Same as EC	14 values/ Same as EC	No	<pre>qtr_cf201.npt, WQ: CBOD constant except CBOD, SS and Coliform</pre>
Klamath Straits Drain	Daily/ Same as EC	Daily/ Same as EC	Semi-monthly, 16 values/ Same as EC	Yes, Temp at zero	qtr_ks01.npt, Q: Q: PacifiCorp / USBR Gage, Temp: USBR?, WQ: Estimated from grab and sonde data recorded by USBR and PacifiCorp and 1992 basecase CT R file, ALK high, 100+
Stormwater Runoff #1	Daily/ Same as EC	Constant	6 values/constant/ Same as EC	No	qtr_0101.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input
Stormwater Runoff #2	Daily/ Same as EC	Constant	6 values/constant/ Same as EC	No	qtr_0201.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case

					Model Input
Stormwater Runoff #3	Daily, Same as #3, 7, 11/ Same as EC	Constant	6 values/constant/ Same as EC	No	qtr_0301.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input
Stormwater Runoff #4	Daily, Same as #4, 5, 6, 8, 9, 10/ Same as EC	Constant	6 values/constant/ Same as EC	No	qtr_0401.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input
Stormwater Runoff #5	Daily, Same as #4, 5, 6, 8, 9, 10/ Same as EC	Constant	6 values/constant/ Same as EC	No	qtr_0501.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input
Stormwater Runoff #6	Daily, Same as #4, 5, 6, 8, 9, 10/ Same as EC	Constant	6 values/constant/ Same as EC	No	qtr_0601.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input
Stormwater Runoff #7	Daily, Same as #3, 7, 11/ Same as EC	Constant	6 values/constant/ Same as EC	No	qtr_0701.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input
Stormwater Runoff #8	Daily, Same as #4, 5, 6, 8, 9, 10/ Same as EC	Constant	6 values/constant/ Same as EC	No	qtr_0801.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input
Stormwater Runoff #9	Daily, Same as #4, 5, 6, 8, 9, 10/ Same as EC	Constant	6 values/constant/ Same as EC	No	qtr_0901.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input
Stormwater Runoff #10	Daily, Same as #4, 5, 6, 8, 9, 10/ Same as EC	Constant	6 values/constant/ Same as EC	No	qtr_1001.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input
Stormwater Runoff #11	Daily, Same as #3, 7, 11/ Same as EC	Constant	6 values/constant/ Same as EC	No	qtr_1101.npt, Temp: 1992Base simulation constant at 12C, WQ: 1992 Base Case Model Input
Point Source Accretion #2	Daily	Constant	6 values/constant/ Same as EC	No	qacc_0201.npt, 2001 A/D calculations from 2001 water balance(1/4 of accretion part only), Temp: constant at 12C, Created from TDT_BR1 for 1992 Base case, WQ: Conc for QDT GW input created from 1992 Base case file on 10-18-02
Point Source Accretion #3	Daily	Constant	6 values/constant/ Same as EC	No	qacc_0301.npt, 2001 A/D calculations from 2001 water balance(1/4 of accretion part only), Temp: constant at 12C, Created from TDT_BR1 for 1992 Base case, WQ: Conc

					for QDT GW input created from 1992 Base case file on 10-18-02
Point Source Accretion #4	Daily	Constant	6 values/constant/ Same as EC	No	qacc_0401.npt, 2001 A/D calculations from 2001 water balance(1/4 of accretion part only), Temp: constant at 12C, Created from TDT_BR1 for 1992 Base case, WQ: Conc for QDT GW input created from 1992 Base case file on 10-18-02
Point Source Accretion #7	Daily	Constant	6 values/constant/ Same as EC	No	qacc_0701.npt, 2001 A/D calculations from 2001 water balance(1/4 of accretion part only), Temp: constant at 12C, Created from TDT_BR1 for 1992 Base case, WQ: Conc for QDT GW input created from 1992 Base case file on 10-18-02

Withdrawals

Names	Frequency Q
LD	daily
NC	daily
AD	daily
#2	daily
#3	daily
#4	daily
#7	daily

Errors? (Yes/No)	Notes
No	qwd_01.npt, different than Existing Condition
No	qwd_01.npt, different than Existing Condition
No	qwd_01.npt, different than Existing Condition
No	qwd_01.npt, different than Existing Condition
No	qwd_01.npt, different than Existing Condition
No	qwd_01.npt, different than Existing Condition
No	qwd_01.npt, different than Existing Condition

Operations

Names	Frequency Q
Lake Ewauna Dam outflow	Hourly

Errors? (Yes/No)	Notes
No	qou_ke01mod.npt, SF flow calculations Keno Dam flow, 1 flow pathway, different than Exisitng Condition

Completeness					
Name	Parameter	Frequency	(Yes/No)	Errors? (Yes/No)	Notes
met_01.npt	Air Temp	hourly	Yes	No	

Same as Exisitng condition	Dew Point Temp	hourly	Yes	No	
	Wind Spd	hourly	Yes	No	Measurement increment seems to change in data set
	Wind Dir	hourly	Yes	No	Wind direction is primarily from 280-340 deg and 145 to 175 deg, grid orientation is primarily 15 to 65 deg
	Cloud Cover	hourly	Yes	No	Constant for day, 0 to 9, unlcear how it was developed
	Solar Rad.	hourly	Yes	Yes	Solar radaition appears to be about 5% higher than in 2000

Pre.opt, Reasonableness? (Yes/No) (No kinetic coefficients)				
	No interpolation for	WSC		
al layer	tributaries, No water	u		
na lavar	holonoo flouvo	Donti		

Warnings Notes	Error Notes	coefficients)	Notes
Epiphyton growth rate [EG=0.001] < 0.1 for epiphyton group 1	Bottom selective withdrawal layer [KBWD=11] > bottom active layer [KB=8] for withdrawal 2	No interpolation for tributaries, No water balance flows distributed	WSC set to 1.0 for whole simulation, Model uses static shading at 100% full solar, Particulate organic matter was turned off for all tributaries and USBC, but simulated
Epiphyton mortality to POM fraction [EPOM=0.000] < 0.5 for epiphyton group 1			
Oxygen to algal respiration stoichiometry [O2AR=1.400] /= 1.1 for algal group1			
Oxygen to algal production stoichiometry [O2AG=1.500] /= 1.4 for algal group1			
Oxygen to epiphyton production stoichiometry [O2EG=1.400] /= 1.4 for epiphyton group1			

Bathymetry Editor

File Names	Phi, Corr ect?	DZ, Reasonable?	DLX, Reason able?	Overall Reasonableness? (Yes/No)	Notes
			Yes, 243.8 to		
bthy3.npt	Yes	Yes, 0.61 m	600 m	Yes	

Does it Run? (Yes/No)	Errors? (Yes/No)	Notes
Yes	No	Ran model from Jday 1 to 5, control file
		same as Existing condition for 2001, no
		difference between 2000 and 2001 cotnrol
		files for steady flow

Model Water body:	J. C. Boyle Reservoir	Model year:	2000
Scenario:	Existing Conditions		

Model Boundary Conditions

Tributaries

		Frequency		Errors?	
Names	Frequency Q	Temp	Frequency WQ	(Yes/No)	Notes
QIN_00.npt	hourly	hourly	hourly	No	USBC. No TIC or ALK outside ~J122-275
QTRSP 00.npt	dailv	hourly	arab sample	No	Temperature: linear interpolated data gap (~J125-132). Periods of zero degrees.

Withdrawals

Names	Frequency Q
None	

Operations

Names	Frequency Q
Structure 1	hourly
Structure 2	hourly
Structure 3	constant value
Structure 4	constant value

Errors? (Yes/No)	Notes

Errors? (Yes/No)	Notes
No	
No	
No	
No	

Name	Parameter	Frequency	Completeness (Yes/No)	Errors? (Yes/No)	Notes
MET_00.npt	Air Temp	hourly	Yes	No	Met data is same as 2000 Copco save for TAIR correction.
	Dew Point Temp	hourly	Yes	Yes	RH not corrected; some winter TDEW > TAIR
	Wind Spd	hourly	Yes	Yes	some data filling. Single value >20m/s
	Wind Dir	hourly	Yes	No	
	Cloud Cover	hourly	Yes	No	Integer values; max = 8

Solar Rad.	hourly	Yes	No	
------------	--------	-----	----	--

Pre.opt,	
Reasonablenes	
s? (Yes/No) (No	
kinetic	
coofficients)	

Warnings Notes	Error Notes	coefficients)	Notes
Check kinetic coefficients	missing heading line in qin_00.npt	some NH4 and LDOM negative values in January (cin_00.npt)	Trivial pre.err
Single wind speed outlier		NH4 negative on J1.213, 1.375	No shading
		LDOM negative on J1.213	No ice cover calculations, and water temperatures go negative

Bathymetry Editor

				Overall	
		DZ,	DLX,	Reasonablenes	
File Names	Phi, Correct?	Reasonable?	Reasonable?	s? (Yes/No)	Notes
bthy.npt	Yes	1 m	40 to 490	Yes	Grid bottom may have stagnant cells

Does it Run? (Yes/No)	Errors? (Yes/No)	Notes
Yes	No	

Model Water body:	J. C. Boyle Reservoir	Model year:	2001
Scenario:	Existing Conditions		

Model Boundary Conditions

Tributaries

		Frequency		Errors?	
Names	Frequency Q	Temp	Frequency WQ	(Yes/No)	Notes
qin_01.npt	hourly	hourly	hourly	No	USBC
qtr_sf01.npt	daily	hourly	grab samples	No	UsesTemperatures and WQ from 2000

Withdrawals

Names	Frequency Q	Errors? (Yes/No)	Notes
None			

Operations

Names	Frequency Q
Structure 1	hourly
Structure 2	hourly
Structure 3	hourly
Structure 4	hourly

Errors? (Yes/No)	Notes
No	
No	zero value
No	constant value
No	constant value

Name	Parameter	Frequency	Completeness (Yes/No)	Errors? (Yes/No)	Notes
MET_01.npt	Air Temp	hourly	Yes	No	
	Dew Point Temp	hourly	Yes	No	
	Wind Spd	hourly	Yes	No	some data filling
	Wind Dir	hourly	Yes	No	
	Cloud Cover	hourly	Yes	No	
	Solar Rad.	hourly	Yes	No	

Pre.opt, Reasonableness? (Yes/No) (No kinetic

 Warnings Notes	Error Notes	coefficients)	Notes	
Check kinetic coefficients	no errors	Yes		

Bathymetry Editor

				Overall	
		DZ,	DLX,	Reasonableness?	
File Names	Phi, Correct?	Reasonable?	Reasonable?	(Yes/No)	Notes
bthy.npt	Yes	1 m	40 to 490	Yes	Grid bottom may have stagnant cells

Does it Run? (Yes/No)	Errors? (Yes/No)	_	Notes
Yes	No		

J. C. Boyle Reservoir	Model year:	2000		
Steady Flow				
tions	_			
			Mat	
			ch	
	J. C. Boyle Reservoir Steady Flow tions	J. C. Boyle Reservoir Model year: Steady Flow tions	J. C. Boyle Reservoir Model year: 2000 Steady Flow tions	J. C. Boyle Reservoir Model year: 2000 Steady Flow tions Mat ch Den

		Frequency		Errors?	Rep	
Names	Frequency Q	Temp	Frequency WQ	(Yes/No)	ort?	Notes
qinsf_00.npt	daily	hourly	hourly	No		USBC
qtrsf_00.npt	daily	hourly	grab samples	No		Temperature: linear interpolated data gap (~J125-132). Periods of zero degrees.
· <u> </u>						

Withdrawals

		Errors?	
Names	Frequency Q	(Yes/No)	Notes
None			

Operations

Names	Frequency Q
Structure 1	daily
Structure 2	daily
Structure 3	constant value
Structure 4	constant value

Errors? (Yes/No)	Notes
No	
No	
No	
No	

Name	Parameter	Frequency	Completeness (Yes/No)	Errors? (Yes/No)	Notes
MET_00.npt	Air Temp	hourly	Yes	No	Met data is same as 2000 Copco save for TAIR correction.
	Dew Point Temp	hourly	Yes	Yes	RH not corrected; some winter TDEW > TAIR
	Wind Spd	hourly	Yes	Yes	some data filling. Single value >20m/s

Wind Dir	hourly	Yes	No	
Cloud Cover	hourly	Yes	No	Integer values; max = 8
Solar Rad.	hourly	Yes	No	

		Pre.opt, Reasonableness? (Yes/No) (No kinetic	
Warnings Notes	Error Notes	coefficients)	Notes
Check kinetic coefficients	qinsf_00.npt is missing a headline and has extra blank line at end of file	some NH4 and LDOM negative values in January (cin_00.npt)	trivial error
Single wind speed outlier		NH4 negative on J1.213, 1.375	
		LDOM negative on J1.213	

Bathymetry Editor

				Overall	
		DZ,	DLX,	Reasonableness?	
File Names	Phi, Correct?	Reasonable?	Reasonable?	(Yes/No)	Notes
bthy.npt	Yes	1 m	40 to 490	Yes	Grid bottom may have stagnant cells

Does it Run? (Yes/No)	Errors? (Yes/No)	 	Notes
Yes	No		

Model Water body:	J. C. Boyle Reservoir	Model year:	2001
Scenario:	Steady Flow		

Model Boundary Conditions

Tributaries

		Frequency		Errors?	Match	
Names	Frequency Q	Temp	Frequency WQ	(Yes/No)	Report?	Notes
qin_01.npt	daily	hourly	hourly	No		USBC
qtr_sfsp01.npt	daily	hourly	grab samples	No		UsesTemperatures and WQ from 2000

Withdrawals

Names	Frequency Q	Errors? (Yes/No)
None		

Notes

Operations

Names	Frequency Q
Structure 1	daily
Structure 2	daily
Structure 3	daily
Structure 4	daily

Errors? (Yes/No)	
No	
No	
No	
No	

Notes
zero value
constant value
constant value

Name	Parameter	Frequency	Completeness (Yes/No)	Errors? (Yes/No)
MET_01.npt	Air Temp	hourly	Yes	No
	Dew Point Temp	hourly	Yes	No
	Wind Spd	hourly	Yes	No
	Wind Dir	hourly	Yes	No
	Cloud Cover	hourly	Yes	No
	Solar Rad.	hourly	Yes	No

Notes				
some data filling				

	Pre.opt, Reasonableness? (Yes/No) (No kinetic					
Warnings Notes	Error Notes	coefficients)	Notes			
Check kinetic coefficients	none	Yes				

Bathymetry Editor

		DZ,	DLX,	Overall Reasonableness?	
File Names	Phi, Correct?	Reasonable?	Reasonable?	(Yes/No)	Notes
bthy.npt	Yes	1 m	40 to 490	Yes	Grid bottom may have stagnant cells

Does it Run? (Yes/No)	Errors? (Yes/No)	_	Notes
Yes	No		

Model Water body	r: Copce	o Reservoir Mod	el year: 2000

Scenario:

Existing Conditions

Model Boundary Conditions

Tributaries

		Frequency		Errors?	Match	
Names	Frequency Q	Temp	Frequency WQ	(Yes/No)	Report?	Notes
QIN_00.npt	hourly	hourly	hourly	No		USBC. TIC & ALK data available ~J122-275
QSP_00.npt				No		Flow is zero

Withdrawals

Names	Frequency Q	_	Errors? (Yes/No)	Notes
None				

Operations

		Errors?		
Names	Frequency Q	(Yes/No)	_	Notes
Structure1	hourly	No		
Structure2	hourly	No		

Meteorological Data

Name	Parameter	Frequency	Completeness (Yes/No)	Errors? (Yes/No)
MET_00.npt	Air Temp	hourly	Yes	No
	Dew Point Temp	hourly	Yes	No
	Wind Spd	hourly	Yes	Yes
	Wind Dir	hourly	Yes	No
	Cloud Cover	hourly	Yes	No
	Solar Rad.	hourly	Yes	No

Notes				
some data filling. Single value >20m/s				
Integer values; max = 8				

Preprocessor

		Pre.opt, Reasonableness? (Yes/No) (No kinetic	
Warnings Notes	Error Notes	coefficients)	Notes
cell widths (7x) could be resolved	no errors	some spring negative NO3 branch inflow concentrations	No shading
Check kinetic coefficients		NO3 negative on J148.625, 153.583 (cin_00.npt)	No ice cover calculations, and water temperatures go negative
Single wind speed outlier			

Bathymetry Editor

		DZ,	DLX,	Overall Reasonableness?	
File Names	Phi, Correct?	Reasonable?	Reasonable?	(Yes/No)	Notes
bthy.npt	Yes	2 m	140-640	Yes	Could use smaller DZ

Does it Run? (Yes/No)	Errors? (Yes/No)	_	Notes
Yes	No		
		_	

Model Water body:	Copco Reservoir	Model year:	2001	
enario:	Existing Conditions			

Model Boundary Conditions

Tributaries

		Frequency		Errors?	Match	
Names	Frequency Q	Temp	Frequency WQ	(Yes/No)	Report?	Notes
QIN_01.npt	hourly	hourly	hourly	No		USBC
QSP_00.npt				No		no flow

Withdrawals

		Errors?	N 4
Names	Frequency Q	(Yes/No)	 Notes
None			

Operations

		Errors?	
Names	Frequency Q	(Yes/No)	Notes
Structure1	hourly	No	
Structure2	hourly	No	no flow

Meteorological Data

Name	Parameter	Frequency	Completeness (Yes/No)	Errors? (Yes/No)
Met_01.npt	Air Temp	hourly	Yes	No
	Dew Point Temp	hourly	Yes	No
	Wind Spd	hourly	Yes	No
	Wind Dir	hourly	Yes	No
	Cloud Cover	hourly	Yes	No
	Solar Rad.	hourly	Yes	No

Notes
Some data filling

Preprocessor

Pre.opt, Reasonableness?

	(Tes/NO) (NO KINETIC					
Warnings Notes	Error Notes	coefficients)	Notes			
cell widths (7x) could be resolved	no errors					

Check kinetic coefficients		

Bathymetry Editor

		DZ,	DLX,	Overall Reasonableness?	
File Names	Phi, Correct?	Reasonable?	Reasonable?	(Yes/No)	Notes
bthy.npt	Yes	2 m	140-640	Yes	Could use smaller DZ

Does it Run? (Yes/No)	Errors? (Yes/No)	_	Notes
Yes	No		

Model Water body:	Copco Reservoir	Model year:	2000
Scenario:	Steady Flow		

Model Boundary Conditions

Tributaries

		Frequency		Errors?	Match	
Names	Frequency Q	Temp	Frequency WQ	(Yes/No)	Report?	Notes
QINSP_00.npt	Daily	Daily	Daily	No		
QSPSF_00.npt				No		Flow is zero

Withdrawals

		Errors?		
Names	Frequency Q	 (Yes/No)	_	Notes
None				

Operations

Names	Frequency Q	Errors? (Yes/No)	Notes	
Structure1	Daily	No		
Structure2	Daily	No		

Meteorological Data

Name	Parameter	Frequency	Completeness (Yes/No)	Errors? (Yes/No)
MET_00.npt	Air Temp	hourly	Yes	No
	Dew Point Temp	hourly	Yes	No
	Wind Spd	hourly	Yes	Yes
	Wind Dir	hourly	Yes	No
	Cloud Cover	hourly	Yes	No
	Solar Rad.	hourly	Yes	No

Notes
same MET data as Existing_00
some data filling. Single value >20m/s
Integer values; max = 8

Preprocessor

		Pre.opt, Reasonableness?	
		(Yes/No) (No kinetic	
Warnings Notes	Error Notes	coefficients)	Notes

cell widths (7x) could be resolved	no errors	Yes	
Check kinetic coefficients			
Single wind speed outlier			

Bathymetry Editor

		DZ,	DLX,	Overall Reasonableness?	
File Names	Phi, Correct?	Reasonable?	Reasonable?	(Yes/No)	Notes
bthy.npt	Yes	2 m	140-640	Yes	Could use smaller DZ

Does it Run? (Yes/No)	Errors? (Yes/No)	 Notes
Yes	No	

Model Water body:	Copco Reservoir	Model year:	2001

Scenario:

Steady Flow

Model Boundary Conditions

Tributaries

		Frequency		Errors?	Match	
Names	Frequency Q	Temp	Frequency WQ	(Yes/No)	Report?	Notes
QIN_01.npt	daily	hourly	hourly	No		USBC
QSP_01.npt				No		flow is zero

Withdrawals

Names	Frequency Q	Errors? (Yes/No)	Notes
None			

Operations

Names	Frequency Q
Structure1	Daily
Structure2	Daily

Errors? (Yes/No)	
No	
No	

Notes			

Name	Parameter	Frequency	Completeness (Yes/No)	Errors? (Yes/No)
Met_01.npt	Air Temp	hourly	Yes	No
	Dew Point Temp	hourly	Yes	No
	Wind Spd	hourly	Yes	No
	Wind Dir	hourly	Yes	No

	Notes
Some data filling	

Cloud Cover	hourly	Yes	No
Solar Rad.	hourly	Yes	No

Pre.opt, Reasonableness? (Yes/No) (No kinetic

Warnings Notes	Error Notes	coefficients)	Notes
cell widths (7x) could be resolved	no errors		
Check kinetic coefficients			

Bathymetry Editor

		DZ,	DLX,	Overall Reasonableness?	
File Names	Phi, Correct?	Reasonable?	Reasonable?	(Yes/No)	Notes
bthy.npt	Yes	2 m	140-640	Yes	Could use smaller DZ

_	Does it Run? (Yes/No)	Errors? (Yes/No)	_	Notes
	Yes	No		
-			-	

Model Water body:	Iron Gate	Model year:	2000

Scenario:

Existing	Conditions	

Model Boundary Conditions

Tributaries

		Frequency		Errors?	Match	
Names	Frequency Q	Temp	Frequency WQ	(Yes/No)	Report?	Notes
qin_00.npt	hourly	hourly	hourly	No		Assumed ALK before J125
qin_cc00.npt	single value	grab samples	grab samples	No		Q = 0.0001 cms
qtr_FC00.npt	single value	single value	single value	No		no flow
qtr_JC00.npt	hourly	grab samples	grab samples	No		

Withdrawals

Names	Frequency Q
Withdrawal 1	daily
Withdrawal 2	daily

Operations

Names	Frequency Q
Structure1	daily
Structure2	daily
Structure3	daily

Errors? (Yes/No) No No

Errors? (Yes/No)	_
No	
No	
No	

	Notes	
constant value		
zero value		

Notes

Name	Parameter	Frequency	Completeness (Yes/No)	Errors? (Yes/No)
met_00.npt	Air Temp	hourly	Yes	No
	Dew Point Temp	hourly	Yes	No
	Wind Spd	hourly	Yes	Yes
	Wind Dir	hourly	Yes	No

Notes	
Temperature is corrected	
RH not corrected	
some data filling. Single value >20m/s	

Cloud Cover	hourly	Yes	No	Integer values; max = 8
Solar Rad.	hourly	Yes	No	

Pre.opt, Reasonableness? (Yes/No) (No kinetic

Warnings Notes	Error Notes	coefficients)	Notes
Check kinetic coefficients	extra blank lines at end of cin_cc00.npt	Yes	trivial error
Single wind speed outlier			No shading
			No ice cover calculations, and water temperatures go negative

Bathymetry Editor

File Names	Phi, Correct?	DZ, Reasonable?	DLX, Reasonable?	Overall Reasonableness? (Yes/No)	Notes
bthy.npt	Yes	2.5 m	36 to 513 m	?	Grid bottom may have stagnant cells;
					cell with DLX = 36 has adjacent cells with DLX = 513 & 403

Does it Run? (Yes/No)	Errors? (Yes/No)	Notes
Yes	No	

Model Water body:	Iron Gate	Model year:	2001

Scenario:

Evicting	Conditiona
EXISUITU	CONDUNIONS

Model Boundary Conditions

Tributaries

		Frequency		Errors?	Match	
Names	Frequency Q	Temp	Frequency WQ	(Yes/No)	Report?	Notes
qin_01.npt	hourly	hourly	hourly	No		
qin_CC01.npt	single value	grab samples	grab samples	No		Q = 0.001 cms
qtr_FC01.npt	single value	single value	single value	No		No flow
qtr_JC01.npt	daily	grab samples	grab samples	No		

Withdrawals

Names	Frequency Q
Withdrawal 1	daily
Withdrawal 2	daily

Operations

Names	Frequency Q
Structure1	daily
Structure2	daily
Structure3	daily

Errors? (Yes/No) No No

Errors? (Yes/No)			
No			
No			
No			

	Notes
F	Fortran integer Jday values
F	Fortran integer Jday values

	Notes
constant value	
zero value	

Name	Parameter	Frequency	Completeness (Yes/No)	Errors? (Yes/No)
	Air Temp	hourly	Yes	No
	Dew Point Temp	hourly	Yes	No
	Wind Spd	hourly	Yes	No
	Wind Dir	hourly	Yes	No

Notes				
TAIR corrected				
some data gap filling				

	Cloud Cover	hourly	Yes	No
ſ	Solar Rad.	hourly	Yes	No

Pre.opt, Reasonableness? (Yes/No) (No kinetic

Warnings Notes	Error Notes	coefficients)	Notes
Check kinetic coefficients	Format error at end of qin_01.npt, tin_01.npt, & spill_01.npt	Yes	trivial error

Bathymetry Editor

File Names	Phi, Correct?	DZ, Reasonable?	DLX, Reasonable?	Overall Reasonableness? (Yes/No)	Notes
bthy2_5.npt	Yes	2.5 m	36 to 513 m	?	Grid bottom may have stagnant cells;
					cell with DLX = 36 has adjacent cells with DLX = 513 & 403

	Does it Run? (Yes/No)	Errors? (Yes/No)		Notes
	Yes	No		
-			-	
Model Water body:	Iron Gate	Model year:	2000	
-------------------	-----------	-------------	------	

Scenario:

Stead	v Flow	

Model Boundary Conditions

Tributaries

		Frequency		Errors?	Match	
Names	Frequency Q	Temp	Frequency WQ	(Yes/No)	Report?	Notes
qinsf_00.npt	hourly	hourly	hourly	No		ALK is constant
qin_cc00.npt	single value	grab samples	grab samples	No		Q = 0.001 cms
qtr_FC00.npt	single value	single value	single value	No		
qtr_JC00.npt	hourly	grab samples	grab samples	No		

Withdrawals

Names	Frequency Q		
Spillsf_00.npt	daily		

Operations

Names	Frequency Q
Structure1	daily
Structure2	daily
Structure3	daily

Errors? (Yes/No) No

Errors? (Yes/No)
No
No
No

Notes
constant value
zero value

Meteorological Data

Name	Parameter	Frequency	Completeness (Yes/No)	Errors? (Yes/No)
MET_00.npt	Air Temp	hourly	Yes	No
	Dew Point Temp	hourly	Yes	No
	Wind Spd	hourly	Yes	Yes
	Wind Dir	hourly	Yes	No

Notes
Temperature is corrected
RH not corrected
some data filling. Single value >20m/s

Notes				

Cloud Cover	hourly	Yes	No	Integer values; max = 8
Solar Rad.	hourly	Yes	No	

Preprocessor

Pre.opt, Reasonableness? (Yes/No) (No kinetic

Warnings Notes	Error Notes	coefficients)	Notes
Check kinetic coefficients	extra blank lines at end of cin_cc00.npt	Yes	trivial error
Single wind speed outlier			

Bathymetry Editor

File Names	Phi, Correct?	DZ, Reasonable?	DLX, Reasonable?	Overall Reasonableness? (Yes/No)	Notes
bthy2_5.npt	Yes	2.5 m	36 to 513 m	?	Grid bottom may have stagnant cells;
					cell with DLX = 36 has adjacent cells with DLX = 513 & 403

W2 Code

 Does it Run? (Yes/No)	Errors? (Yes/No)	Notes
Yes	No	

Model Water body:	Iron Gate	Model year:	2001

Scenario:

Steady Flow	

Model Boundary Conditions

Tributaries

		Frequency		Errors?	Match	
Names	Frequency Q	Temp	Frequency WQ	(Yes/No)	Report?	Notes
qin_01.npt	daily	hourly	hourly	No		
qin_CC01.npt	single value	grab samples	grab samples	No		Q = 0.001 cms
qtr_FC01.npt	single value	single value	single value	No		No flow
qtr_JC01.npt	daily	grab samples	grab samples	No		

Withdrawals

Names	Frequency Q	
Spill_01.npt	daily	

Operations

Names	Frequency Q
Structure1	daily
Structure2	daily
Structure3	daily

Errors? (Yes/No) No

Errors? (Yes/No)	
No	
No	
No	

		Notes	
No flow	/withdrawal		

Notes
constant value
zero value

Meteorological Data

Name	Parameter	Frequency	Completeness (Yes/No)	Errors? (Yes/No)
Met_01.npt	Air Temp	hourly	Yes	No
	Dew Point Temp	hourly	Yes	No
	Wind Spd	hourly	Yes	No
	Wind Dir	hourly	Yes	No

Notes		
TAIR corrected		
some data gap filling		

Cloud Cover	hourly	Yes	No
Solar Rad.	hourly	Yes	No

Preprocessor

Pre.opt, Reasonableness? (Yes/No) (No kinetic

Warnings Notes	Error Notes	coefficients)	Notes
Check kinetic coefficients	Blank lines at end of file in qtr_jc01.npt	Yes	trivial error

Bathymetry Editor

File Names	Phi, Correct?	DZ, Reasonable?	DLX, Reasonable?	Overall Reasonableness? (Yes/No)	Notes
bthy2_5.npt	Yes	2.5 m	36 to 513 m	?	Grid bottom may have stagnant cells;
					cell with DLX = 36 has adjacent cells with DLX = 513 & 403
					DZ could be smaller

W2 Code

_	Does it Run? (Yes/No)	Errors? (Yes/No)	_	Notes
	Yes	No		
			-	

Appendix C: CE-QUAL-W2 Parameter Values and Kinetic Coefficients

The model kinetic coefficients for the CE-QUAL-W2 models were evaluated for appropriateness and consistency between models. Two simulation years were evaluated, 2000 and 2001, but only two scenarios were evaluated, Existing Conditions and Steady Flow since the No Project scenario did not use CE-QUAL-W2. There were four reservoir systems reviewed and these include: Lake Ewauna, J. C. Boyle Reservoir, Copco Reservoir and Iron Gate Reservoir.

Models coefficients used in each model were compared with the list of coefficients listed in the report: <u>Klamath River Modeling Framework to Support the PacifiCorp Federal Energy Regulatory Commission</u> <u>Hydropower Relicensing Application</u>, Draft 11-14-2003, prepared for PacifiCorp, by Watercourse Engineering, Inc. and the default values list in the CE-QUAL-W2 User's Manual (Cole and Wells, 2003).

Year 2000

				Lake Ew	vauna	J. C. Boyle Reservoir		Copco Reservoir		Iron Gate Reservoir	
Variable	Description	Units	Typical/ Default values	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow
Spatial and Ru	n Time Informati	ion									
LAT	Latitude, degrees	degrees		42.13	42.13	42.12	42.12	42.12	42.12	42.97	42.97
LONG	Longitude, degrees	degrees		121.95	121.95	122.05	122.05	122.33	122.33	122.42	122.42
EBOT	Bottom elevation of waterbody, m	m		1237.30 (report 1236.25)	1237.3	1143.75	1143.75	761.09	761.09	663.78	663.78
SLOPE	Waterbody bottom slope			0	0	0	0	0	0	0	0
DLT MAX	Maximum timestep, sec	sec		500	500	500	500	500	500	500	500
DLT MIN	Minimum timestep, sec	sec		5	5	5	5	5	5	5	5
Hydrodynamic	s and Longitudin	al Transp	ort								
AX	Longitudinal eddy viscosity (for momentum dispersion)	m²/sec	1	1	1	1	1	1	1	1	1
DX	Longitudinal eddy diffusivity (for dispersion of heat and constituents)	m²/sec	1	1	1	1	1	1	1	1	1
FI	Interfacial friction factor		0.01	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Temperature											
AFW	A coefficient in the wind speed formulation		9.2	9.2	9.2	18	18	9.2	9.2	6	6
BETA	Fraction of incident solar radiation absorbed at the water surface		0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
BEW	B coefficient in the		0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46

Table 4. CE-QUAL-W2 parameter values and kinetic coefficients for reservoir models, simulation year 2000

				Lake Ew	/auna	J. C. Boyle	Reservoir	Copco Reservoir		Iron Gate Reservoir	
Variable	Description	Units	Typical/ Default values	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow
	wind speed formulation										
CBHE	Coefficient of bottom heat exchange	Wm ² /sec	0.3	0.3	0.3	7.00E-08	7.00E- 08	3	3	17.14	17.14
CFW	C coefficient in the wind speed formulation		2.0	2.4 <mark>(report:</mark> 1)	2.4	1	1	1	1	1	1
TSED	Sediment (ground) temperature	°C		12.0	12.0	12	12	10	10	7	7
TSEDF	Heat lost to sediments that is added back to water column, fraction		0 to 1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
WINDH	Wind speed measurement height, m		2.0	2.0	2.0	2	2	2	2	2	2
WSC	Wind sheltering coefficient			1.0	1.0	1	1	1	1	1	1
Water Quality											
Light Extinction	<u>)n</u>										
EXH20	Extinction for water	/m	0.25	0.25	0.25	0.25	0.25	0.5 <mark>(report</mark> <mark>0.25)</mark>	0.5 <mark>(report</mark> 0.25)	0.25	0.25
EXSS	Extinction due to inorganic suspended solids	m³/m/g	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
EXOM	Extinction due to organic suspended solids	m³/m/g	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
EXA	Extinction due to organic algal type 1	m³/m/g	0.2	0.2	0.2	0.2	0.2	0.4	0.4	0.45	0.45
Suspended Sol	ids										
SSS	Suspended solids settling rate	m/day	1	1	1	1	1	1	1	1	1
PARTP	Phosphorous partitioning coefficient for suspended solids		0.0	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Algae											

				Lake Ew	/auna	J. C. Boyle	Reservoir	Copco Reservoir		Iron Gate R	eservoir
Variable	Description	Units	Typical/ Default values	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow
AC1	Stoichiometric equivalent between algal biomass and carbon, for algal type 1		0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
ACHLA1	Ratio between algal biomass and chlorophyll a, for algal type 1		145	145	145	145	145	145	145	145	145
AE1	Maximum algal excretion rate for algal type 1	/day	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
AG1	Maximum algal growth rate for algal type 1	/day	2	3.0	3.0	3	3	6 <mark>(report 3)</mark>	6	6 <mark>(report 3)</mark>	6
AHSN	Algal half- saturation constant for nitrogrn limited growth, for algal type 1	g/m ³	0.014	0.014	0.014	0	0	0.014	0.014	0.014	0.014
AHSP1	Algal half- saturation constant for phosphorous limited growth, for algal type 1	g/m	0.003	0.003	0.003	0.014	0.014	0.003	0.003	0.003	0.003
AK11	Fraction of algal growth rate at ALGT1 for algal type 1		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
AK21	Fraction of maximum algal growth rate at ALGT2 for algal type 1		0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
AK31	Fraction of maximum algal growth rate at ALGT3 for algal type 1		0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
AK41	Fraction of algal growth rate at		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

				Lake Ew	/auna	J. C. Boyle	Reservoir	Copco Reservoir		Iron Gate Reservoir	
Variable	Description	Units	Typical/ Default values	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow
	ALGT4 for algal type 1										
AM1	Maximum algal mortality rate for algal type 1	/day	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
AN1	Stoichiometric equivalent between algal biomass and nitrogen, for algal type 1		0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
ANEQN1	Equation number for algal ammonium preference (either 1 or 2), for algal type 1		1 or 2	2	2	1	1	1	1	1	1
ANPR1	Algal half saturation constant for ammonium preference, for algal type 1		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
AP1	Stoichiometric equivalent between algal biomass and phosphorus, for algal type 1		0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
APOM1	Fraction of algal biomass lost by mortality to detritus for algal type 1		0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
AR1	Maximum algal respiration rate for algal type 1	/day	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
AS1	Algal settling rate for algal type 1	m/day	0.1	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15
ASAT1	Saturation intensity at maximum photosynthetic rate for algal type	W/m ²	75	100	100	100	100	100	100	100	100

				Lake Ew	/auna	J. C. Boyle	Reservoir	Copco Reservoir		Iron Gate R	eservoir
Variable	Description	Units	Typical/ Default values	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow
	1										
AT11	Lower temperature for algal growth for algal type 1	°C	5	5	5	5	5	5	5	5	5
AT21	Lower temperature for maximum algal growth for algal type 1	°C	25	25	25	25	25	25	25	25	25
AT31	Upper temperature for maximum algal growth for algal type 1	°C	35	35	35	35	35	35	35	35	35
AT41	Upper temperature for algal growth for algal type 1	°C	40	40	40	40	40	40	40	40	40
Epiphyton- tu	rned off										
EB1	Epiphyton burial rate for epiphyton type 1	/day	0.001	0.0	0.0	0.001	0.001	0.001	0.001	0.00001	0.00001
EC1	Stoichiometric equivalent between organic matter and carbon for epiphyton type 1		0.45	0.0	0.0	0	0	0	0	0	0
ECHLA1	Ratio between epiphyton biomass and chlorophyll a, for epiphyton type 1		145	67	67	67	67	67	67	67	67
EE1	Maximum epiphyton excretion rate for epiphyton type 1	/day	0.04	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
EG1	Maximum epiphyton growth rate for epiphyton type 1	/day	2.0	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
EHS1	Epiphyton biomass limitation factor, for epiphyton type 1	g/m3	15	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
EHSN1	Epiphyton half-	g/m3	0.014	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001

				Lake Ew	/auna	J. C. Boyle	Reservoir	Copco Reservoir		Iron Gate R	eservoir
Variable	Description	Units	Typical/ Default values	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow
	saturation for nitrogen limited growth, for epiphyton type 1										
EHSP1	Epiphyton half- saturation for phosphorus limited growth, for epiphyton type 1	g/m3	0.003	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
EK11	Fraction of epiphyton growth rate at ALGT1 for epiphyton type 1		0.1	0.1	0.1	0.01	0.01	0.01	0.01	0.01	0.01
EK21	Fraction of maximum epiphyton growth rate at ALGT2 for epiphyton type 1		0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
EK31	Fraction of maximum epiphyton growth rate at ALGT3 for epiphyton type 1		0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
EK41	Fraction of epiphyton growth rate at ALGT4 for epiphyton type 1		0.1	0.1	0.1	0.01	0.01	0.01	0.01	0.01	0.01
EM1	Maximum epiphyton mortality rate for epiphyton type 1	/day	0.1	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
EN1	Stoichiometric equivalent between organic matter and nitrogen for epiphyton type 1		0.08	0.0	0.0	0	0	0	0	0	0
ENEQN1	Ammonia prefence factor for epiphyton type 1		1 or 2	1	1	1	1	1	1	1	1
EP1	Stoichiometric equivalent between organic matter and		0.005	0.0	0.0	0	0	0	0	0	0

				Lake Ew	/auna	J. C. Boyle	Reservoir	Copco Reservoir		Iron Gate Reservoir	
Variable	Description	Units	Typical/ Default values	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow
	phosphorus for epiphyton type 1										
EPOM1	Fraction of epiphyton biomass converted to particulate organic matter for epiphyton type 1		0.8	0.0	0.0	0	0	0	0	0	0
ER1	Maximum epiphyton respiration rate for epiphyton type 1	/day	0.04	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
ESAT1	Saturation intensity at maximum photosynthetic rate for epiphyton type 1	W/m ²	75	20.1	20.1	20.1	20.1	20.1	20.1	20.1	20.1
ET11	Lower temperature for epiphyton growth for epiphyton type 1	°C	5	0	0	0	0	0	0	0	0
ET21	Lower temperature for maximum epiphyton growth for epiphyton type 1	°C	25	10	10	10	10	10	10	10	10
ET31	Upper temperature for maximum epiphyton growth for epiphyton type 1	°C	35	30	30	30	30	30	30	30	30
ET41	Upper temperature for epiphyton growth for epiphyton type 1	°C	40	45	45	45	45	45	45	45	45
Organic Matte	er										
LDOMDK	Labile DOM decay rate	/day	0.1	0.1	0.1	0.05	0.05	0.01	0.01	0.01	0.01
LPOMDK	Labile Detritus (POM) decay rate	/day	0.08	0.08	0.08	0.08	0.08	0.01	0.01	0.01	0.01
LRDDK	Labile to refractory DOM decay rate	/day	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01

				Lake Ew	/auna	J. C. Boyle	Reservoir	Copco Reservoir		Iron Gate Reservoir	
Variable	Description	Units	Typical/ Default values	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow
LRPDK	Labile to refractory POM decay rate	/day	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
OMK1	Fraction of organic matter decay rate at OMT1		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
OMK2	Fraction of organic matter decay rate at OMT2		0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
OMT1	Lower temperature for organic matter decay	°C	4	4	4	4	4	4	4	4	4
OMT2	Lower temperature for maximum organic matter decay	°C	25	25	25	25	25	25	25	25	25
POMS	Detritus (POM) settling rate	m/day	0.1	0.1	0.1	1	1	1	1	1	1
RDOMDK	Refractory DOM decay rate	/day	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
RPOMDK	Refractory Detritus (POM) decay rate	/day	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Nitrogen											
NH4DK	Ammonia decay rate (nitrification rate)	/day	0.12	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
NH4K1	Fraction of nitrification rate at NH4T1		0.10	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
NH4K2	Fraction of nitrification rate at NH4T2		0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
NH4T1	Lower temperature for ammonia decay	°C	5.0	5	5	5	5	5	5	5	5
NH4T2	Lower temperature for maximum ammonia decay	°C	25.0	20	20	20	20	20	20	20	20
<u>Nitrate</u>											
NO3DK	Nitrate decay rate (denitrification rate)	/day	0.03 to 0.15	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
NO3K1	Fraction of denitrification rate		0.10	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

				Lake Ew	auna	J. C. Boyle	Reservoir	Copco R	eservoir	Iron Gate R	eservoir
Variable	Description	Units	Typical/ Default values	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow
	at NO3T1										
NO3K2	Fraction of denitrification rate at NO3T2		0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
NO3T1	Lower temperature for nitrate decay	°C	5.0	5	5	5	5	5	5	5	5
NO3T2	Lower temperature for maximum nitrate decay	°C	25.0	25	25	25	25	25	25	25	25
Dissolved Oxys	gen										
O2AG	Oxygen stoichiometric equivalent for algal growth (primary production)		1.4	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
O2AR	Oxygen stoichiometric equivalent for dark respiration		1.1	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
O2LIM	Dissolved oxygen concentration at which anaerobic processes begin	g/m ³	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
O2NH4	Oxygen stoichiometric equivalent for ammonia decay (nitrification)		4.57	4.57	4.57	4.57	4.57	4.57	4.57	4.57	4.57
O2OM	Oxygen stoichiometric equivalent for organic matter decay		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
ORGC	Stoichiometric equivalent between organic matter and carbon		0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
ORGN	Stoichiometric equivalent between organic matter and nitrogen		0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
ORGP	Stoichiometric		0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005

				Lake Ew	vauna	J. C. Boyle	Reservoir	Copco R	eservoir	Iron Gate R	eservoir
Variable	Description	Units	Typical/ Default values	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow
	equivalent between organic matter and phosphorus										
Tracer-off				•		•		•		•	
CG0DK1	(Tracer) 0-order decay rate	/day		0	0	0	0	0	0	0	0
CG1DK1	(Tracer) 1st-order decay rate	/day		0	0	0	0	0	0	0	0
CGQ101	(Tracer) Arhennius temperature rate multiplier			0	0	0	0	0	0	0	0
CGS1	(Tracer) Settling rate	m/day		0	0	0	0	0	0	0	0
Residence Tim	ne/Age										
CG0DK2	(Age) 0-order decay rate	/day	-1.0	-1	-1	-1	-1	-1	-1	-1	-1
CG1DK2	(Age) 1st-order decay rate	/day	0	0	0	0	0	0	0	0	0
CGQ102	(Age) Arhennius temperature rate multiplier		0	0	0	0	0	0	0	0	0
CGS2	(Age) Settling rate	m/day	0	0	0	0	0	0	0	0	0
<u>Coliform</u>											
CG0DK3	(Coliform) 0-order decay rate			0	0	0	0	0	0	0	0
CG1DK3	(Coliform) 1st- order decay rate	/day	0.20 to 5.52	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
CGQ103	(Coliform) Arhennius temperature rate multiplier		1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
CGS3	(Coliform) Settling rate	m/day		1	1	1	1	1	1	1	1
Sediments											
CO2REL	Sediment carbon dioxide release rate, fraction of SOD		0.1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
NH4REL	Sediment release rate of ammonium, fraction of SOD		0.001	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07

				Lake Ew	/auna	J. C. Boyle	Reservoir	Copco R	eservoir	Iron Gate R	eservoir
Variable	Description	Units	Typical/ Default values	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow
NO3S	De-nitrification rate from sediments	m/day	1.0	0.0	0.0	0	0	0	0	0	0
PO4R	Sediment release rate of phosphorus, fraction of SOD		0.001	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
SEDK	Sediment decay rate	/day	0.1	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
SOD	Zero-order sediment oxygen demand for each segment	g O ₂ /m²day	0.3, 0.1 to 5.8	2	2	1 <mark>(report 3)</mark>	1 <mark>(report</mark> 3)	1 <mark>(report 2)</mark>	1 <mark>(report</mark> 2)	1 <mark>(report 3)</mark>	1 <mark>(report</mark> 3)
Carbonaceous	Biochemical Oxy	gen Dema	nd			•		•		•	
KBOD	5-day decay rate @ 20°C	/day	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
TBOD	Temperature coefficient		1.0147	1.0147	1.0147	1.0147	1.0147	1.0147	1.0147	1.0147	1.0147
RBOD	Ratio of CBOD5 to ultimate CBOD		1.85	1.85	1.85	1.85	1.85	1.85	1.85	1.85	1.85
BODP	Phosphorus stoichiometry for CBOD decay		0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
BODN	Nitrogen stoichiometry for CBOD decay		0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
BODC	Carbon stoichiometry for CBOD decay		0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32

Year 2001

				Lake Ew	auna	J. C. Boyle	Reservoir	Copco Re	eservoir	Iron Gate R	eservoir
Variable	Description	Units	Typical/ Default values	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow
Spatial and Ru	n Time Informat	ion		•		•		•			
LAT	Latitude, degrees	degrees		42.13	42.13	42.12	42.12	42.12	42.12	42.97	42.97
LONG	Longitude, degrees	degrees		121.95	121.95	122.05	122.05	122.33	122.33	122.42	122.42
EBOT	Bottom elevation of waterbody, m	m		1237.30 (report 1236.25)	1237.3	1143.75	1143.75	761.09	761.09	663.78	663.78
SLOPE	Waterbody bottom slope			0	0	0	0	0	0	0	0
DLT MAX	Maximum timestep, sec	sec		500	500	500	500	500	500	500	500
DLT MIN	Minimum timestep, sec	sec		5	5	5	5	5	5	5	5
Hydrodynamic	s and Longitudin	al Transp	ort								
AX	Longitudinal eddy viscosity (for momentum dispersion)	m²/sec	1	1	1	1	1	1	1	1	1
DX	Longitudinal eddy diffusivity (for dispersion of heat and constituents)	m²/sec	1	1	1	1	1	1	1	1	1
FI	Interfacial friction factor		0.01	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Temperature											
AFW	A coefficient in the wind speed formulation		9.2	9.2	9.2	18	18	9.2	9.2	6	6
BETA	Fraction of incident solar radiation absorbed at the water surface		0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
BFW	B coefficient in the		0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46

Table 5. CE-QUAL-W2 parameter values and kinetic coefficients for reservoir models, simulation year 2001

				Lake Ew	auna	J. C. Boyle I	Reservoir	Copco Re	eservoir	Iron Gate R	eservoir
Variable	Description	Units	Typical/ Default values	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow
	wind speed formulation										
CBHE	Coefficient of bottom heat exchange	Wm ² /sec	0.3	0.3	0.3	7.00E-08	7.00E- 08	3	3	17.14	17.14
CFW	C coefficient in the wind speed formulation		2.0	2.4 <mark>(report</mark> 1)	2.4	1	1	1	1	1	1
TSED	Sediment (ground) temperature	°C		12.0	12.0	12	12	10	10	7	7
TSEDF	Heat lost to sediments that is added back to water column, fraction		0 to 1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
WINDH	Wind speed measurement height, m		2.0	2.0	2.0	2	2	2	2	2	2
WSC	Wind sheltering coefficient			1.0	1.0	1	1	1	1	1	1
Water Quality											
Light Extinction	on										
EXH20	Extinction for water	/m	0.25	0.25	0.25	0.25	0.25	0.5 <mark>(report</mark> <mark>0.25)</mark>	0.5 <mark>(report</mark> 0.25)	0.25	0.25
EXSS	Extinction due to inorganic suspended solids	m³/m/g	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
EXOM	Extinction due to organic suspended solids	m³/m/g	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
EXA	Extinction due to organic algal type 1	m³/m/g	0.2	0.2	0.2	0.2	0.2	0.4	0.4	0.45	0.45
Suspended Sol	<u>ids</u>										
SSS	Suspended solids settling rate	m/day	1	1	1	1	1	1	1	1	1
PARTP	Phosphorous partitioning coefficient for suspended solids		0.0	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Algae											

				Lake Ew	/auna	J. C. Boyle	Reservoir	Copco Re	eservoir	Iron Gate R	eservoir
Variable	Description	Units	Typical/ Default values	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow
AC1	Stoichiometric equivalent between algal biomass and carbon, for algal type 1		0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
ACHLA1	Ratio between algal biomass and chlorophyll a, for algal type 1		145	145	145	145	145	145	145	145	145
AE1	Maximum algal excretion rate for algal type 1	/day	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
AG1	Maximum algal growth rate for algal type 1	/day	2	3.0	3.0	3	3	6 <mark>(report 3)</mark>	6 <mark>(report</mark> 3)	6 <mark>(report 3)</mark>	6 <mark>(report</mark> <mark>3)</mark>
AHSN	Algal half- saturation constant for nitrogrn limited growth, for algal type 1	g/m ³	0.014	0.014	0.014	0	0	0.014	0.014	0.014	0.014
AHSP1	Algal half- saturation constant for phosphorous limited growth, for algal type 1	g/m	0.003	0.003	0.003	0.014	0.014	0.003	0.003	0.003	0.003
AK11	Fraction of algal growth rate at ALGT1 for algal type 1		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
AK21	Fraction of maximum algal growth rate at ALGT2 for algal type 1		0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
AK31	Fraction of maximum algal growth rate at ALGT3 for algal type 1		0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
AK41	Fraction of algal growth rate at		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

				Lake Ew	/auna	J. C. Boyle	Reservoir	Copco Re	eservoir	Iron Gate R	eservoir
Variable	Description	Units	Typical/ Default values	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow
	ALGT4 for algal type 1										
AM1	Maximum algal mortality rate for algal type 1	/day	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
AN1	Stoichiometric equivalent between algal biomass and nitrogen, for algal type 1		0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
ANEQN1	Equation number for algal ammonium preference (either 1 or 2), for algal type 1		1 or 2	2	2	1	1	1	1	1	1
ANPR1	Algal half saturation constant for ammonium preference, for algal type 1		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
AP1	Stoichiometric equivalent between algal biomass and phosphorus, for algal type 1		0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
APOM1	Fraction of algal biomass lost by mortality to detritus for algal type 1		0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
AR1	Maximum algal respiration rate for algal type 1	/day	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
AS1	Algal settling rate for algal type 1	m/day	0.1	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15
ASAT1	Saturation intensity at maximum photosynthetic rate for algal type	W/m ²	75	100	100	100	100	100	100	100	100

				Lake Ew	/auna	J. C. Boyle	Reservoir	Copco Re	eservoir	Iron Gate R	eservoir
Variable	Description	Units	Typical/ Default values	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow
	1										
AT11	Lower temperature for algal growth for algal type 1	°C	5	5	5	5	5	5	5	5	5
AT21	Lower temperature for maximum algal growth for algal type 1	°C	25	25	25	25	25	25	25	25	25
AT31	Upper temperature for maximum algal growth for algal type 1	°C	35	35	35	35	35	35	35	35	35
AT41	Upper temperature for algal growth for algal type 1	°C	40	40	40	40	40	40	40	40	40
Epiphyton- tu	rned off										
EB1	Epiphyton burial rate for epiphyton type 1	/day	0.001	0.0	0.0	0.001	0.001	0.001	0.001	0.00001	0.00001
EC1	Stoichiometric equivalent between organic matter and carbon for epiphyton type 1		0.45	0.0	0.0	0	0	0	0	0	0
ECHLA1	Ratio between epiphyton biomass and chlorophyll a, for epiphyton type 1		145	67	67	67	67	67	67	67	67
EE1	Maximum epiphyton excretion rate for epiphyton type 1	/day	0.04	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
EG1	Maximum epiphyton growth rate for epiphyton type 1	/day	2.0	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
EHS1	Epiphyton	g/m3	15	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001

				Lake Ew	vauna	J. C. Boyle	Reservoir	Copco Re	eservoir	Iron Gate R	eservoir
Variable	Description	Units	Typical/ Default values	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow
	biomass limitation factor, for epiphyton type 1										
EHSN1	Epiphyton half- saturation for nitrogen limited growth, for epiphyton type 1	g/m3	0.014	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
EHSP1	Epiphyton half- saturation for phosphorus limited growth, for epiphyton type 1	g/m3	0.003	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
EK11	Fraction of epiphyton growth rate at ALGT1 for epiphyton type 1		0.1	0.1	0.1	0.01	0.01	0.01	0.01	0.01	0.01
EK21	Fraction of maximum epiphyton growth rate at ALGT2 for epiphyton type 1		0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
EK31	Fraction of maximum epiphyton growth rate at ALGT3 for epiphyton type 1		0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
EK41	Fraction of epiphyton growth rate at ALGT4 for epiphyton type 1		0.1	0.1	0.1	0.01	0.01	0.01	0.01	0.01	0.01
EM1	Maximum epiphyton mortality rate for epiphyton type 1	/day	0.1	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
EN1	Stoichiometric equivalent between organic matter and nitrogen for epiphyton type 1		0.08	0.0	0.0	0	0	0	0	0	0
ENEQN1	Ammonia preference factor for epiphyton type		1 or 2	1	1	1	1	1	1	1	1

				Lake Ew	vauna	J. C. Boyle	Reservoir	Copco Re	eservoir	Iron Gate R	eservoir
Variable	Description	Units	Typical/ Default values	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow
	1										
EP1	Stoichiometric equivalent between organic matter and phosphorus for epiphyton type 1		0.005	0.0	0.0	0	0	0	0	0	0
EPOM1	Fraction of epiphyton biomass converted to particulate organic matter for epiphyton type 1		0.8	0.0	0.0	0	0	0	0	0	0
ER1	Maximum epiphyton respiration rate for epiphyton type 1	/day	0.04	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
ESAT1	Saturation intensity at maximum photosynthetic rate for epiphyton type 1	W/m²	75	20.1	20.1	20.1	20.1	20.1	20.1	20.1	20.1
ET11	Lower temperature for epiphyton growth for epiphyton type 1	°C	5	0	0	0	0	0	0	0	0
ET21	Lower temperature for maximum epiphyton growth for epiphyton type 1	°C	25	10	10	10	10	10	10	10	10
ET31	Upper temperature for maximum epiphyton growth for epiphyton type 1	°C	35	30	30	30	30	30	30	30	30
ET41	Upper temperature for epiphyton growth	°C	40	45	45	45	45	45	45	45	45

				Lake Ew	auna	J. C. Boyle	Reservoir	Copco Re	eservoir	Iron Gate R	eservoir
Variable	Description	Units	Typical/ Default values	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow
	for epiphyton type										
Organic Matte	er										
LDOMDK	Labile DOM decay rate	/day	0.1	0.1	0.1	0.05	0.05	0.01	0.01	0.01	0.01
LPOMDK	Labile Detritus (POM) decay rate	/day	0.08	0.08	0.08	0.08	0.08	0.01	0.01	0.01	0.01
LRDDK	Labile to refractory DOM decay rate	/day	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
LRPDK	Labile to refractory POM decay rate	/day	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
OMK1	Fraction of organic matter decay rate at OMT1		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
OMK2	Fraction of organic matter decay rate at OMT2		0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
OMT1	Lower temperature for organic matter decay	°C	4	4	4	4	4	4	4	4	4
OMT2	Lower temperature for maximum organic matter decay	°C	25	25	25	25	25	25	25	25	25
POMS	Detritus (POM) settling rate	m/day	0.1	0.1	0.1	1	1	1	1	1	1
RDOMDK	Refractory DOM decay rate	/day	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
RPOMDK	Refractory Detritus (POM) decay rate	/day	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
<u>Nitrogen</u>					-						-
NH4DK	Ammonia decay rate (nitrification rate)	/day	0.12	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
NH4K1	Fraction of nitrification rate at NH4T1		0.10	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
NH4K2	Fraction of nitrification rate at NH4T2		0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
NH4T1	Lower	°C	5.0	5	5	5	5	5	5	5	5

				Lake Ew	/auna	J. C. Boyle	Reservoir	Copco Re	eservoir	Iron Gate R	eservoir
Variable	Description	Units	Typical/ Default values	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow
	temperature for ammonia decay										
NH4T2	Lower temperature for maximum ammonia decay	°C	25.0	20	20	20	20	20	20	20	20
Nitrate											
NO3DK	Nitrate decay rate (denitrification rate)	/day	0.03 to 0.15	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
NO3K1	Fraction of denitrification rate at NO3T1		0.10	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
NO3K2	Fraction of denitrification rate at NO3T2		0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
NO3T1	Lower temperature for nitrate decay	°C	5.0	5	5	5	5	5	5	5	5
NO3T2	Lower temperature for maximum nitrate decay	°C	25.0	25	25	25	25	25	25	25	25
Dissolved Oxy	gen			•	•	•		•		•	•
O2AG	Oxygen stoichiometric equivalent for algal growth (primary production)		1.4	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
O2AR	Oxygen stoichiometric equivalent for dark respiration		1.1	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
O2LIM	Dissolved oxygen concentration at which anaerobic processes begin	g/m ³	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
O2NH4	Oxygen stoichiometric equivalent for ammonia decay (nitrification)		4.57	4.57	4.57	4.57	4.57	4.57	4.57	4.57	4.57

				Lake Ewauna		J. C. Boyle Reservoir		Copco Reservoir		Iron Gate Reservoir	
Variable	Description	Units	Typical/ Default values	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow
O2OM	Oxygen stoichiometric equivalent for organic matter decay		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
ORGC	Stoichiometric equivalent between organic matter and carbon		0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
ORGN	Stoichiometric equivalent between organic matter and nitrogen		0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
ORGP	Stoichiometric equivalent between organic matter and phosphorus		0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Tracer-off											
CG0DK1	(Tracer) 0-order decay rate	/day		0	0	0	0	0	0	0	0
CG1DK1	(Tracer) 1st-order decay rate	/day		0	0	0	0	0	0	0	0
CGQ101	(Tracer) Arhennius temperature rate multiplier			0	0	0	0	0	0	0	0
CGS1	(Tracer) Settling rate	m/day		0	0	0	0	0	0	0	0
Residence Tin	ne/Age										
CG0DK2	(Age) 0-order decay rate	/day	-1.0	-1	-1	-1	-1	-1	-1	-1	-1
CG1DK2	(Age) 1st-order decay rate	/day	0	0	0	0	0	0	0	0	0
CGQ102	(Age) Arhennius temperature rate multiplier		0	0	0	0	0	0	0	0	0
CGS2	(Age) Settling rate	m/day	0	0	0	0	0	0	0	0	0
Coliform-off	-					•					
CG0DK3	(Coliform) 0-order decay rate			0	0	0	0	0	0	0	0

				Lake Ew	vauna	J. C. Boyle	Reservoir	Copco Re	eservoir	Iron Gate R	eservoir
Variable	Description	Units	Typical/ Default values	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow
CG1DK3	(Coliform) 1st- order decay rate	/day	0.20 to 5.52	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
CGQ103	(Coliform) Arhennius temperature rate multiplier		1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
CGS3	(Coliform) Settling rate	m/day		1	1	1	1	1	1	1	1
Sediments											
CO2REL	Sediment carbon dioxide release rate, fraction of SOD		0.1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
NH4REL	Sediment release rate of ammonium, fraction of SOD		0.001	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
NO3S	De-nitrification rate from sediments	m/day	1.0	0.0	0.0	0	0	0	0	0	0
PO4R	Sediment release rate of phosphorus, fraction of SOD		0.001	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
SEDK	Sediment decay rate	/day	0.1	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
SOD	Zero-order sediment oxygen demand for each segment	g O ₂ /m²day	0.3, 0.1 to 5.8	2	2	1 <mark>(report 3)</mark>	1 <mark>(report</mark> 3)	1 <mark>(report 2)</mark>	1 <mark>(report</mark> 2)	1 <mark>(report 3)</mark>	1 <mark>(report</mark> 3)
Carbonaceous	Biochemical Oxy	gen Dema	nd								
KBOD	5-day decay rate @ 20°C	/day	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
TBOD	Temperature coefficient		1.0147	1.0147	1.0147	1.0147	1.0147	1.0147	1.0147	1.0147	1.0147
RBOD	Ratio of CBOD5 to ultimate CBOD		1.85	1.85	1.85	1.85	1.85	1.85	1.85	1.85	1.85
BODP	Phosphorus stoichiometry for CBOD decay		0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
BODN	Nitrogen stoichiometry for CBOD decay		0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06

	Lak			Lake Ew	Lake Ewauna J. C. B		J. C. Boyle Reservoir		Copco Reservoir		Iron Gate Reservoir	
Variable	Description	Units	Typical/ Default values	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow	Existing Condition	Steady Flow	
BODC	Carbon stoichiometry for CBOD decay		0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	

Appendix D: RMA2/RMA11 Parameter Values and Kinetic Coefficients

The kinetic coefficients used in the RMA models and documented in the report: <u>Klamath River</u> <u>Modeling Framework to Support the PacifiCorp Federal Energy Regulatory Commission Hydropower</u> <u>Relicensing Application</u>, Draft 11-14-2003, prepared for PacifiCorp, by Watercourse Engineering, Inc. were compared. The No Project Scenario lumped several river and reservoir reaches together into three models which are listed in Table 6 The coefficients the three models were compared to the furthest upstream reach from the Existing Conditions Scenario and found to be similar. The model files were then compared for each reach between the scenarios and the two simulation years, 2000 and 2001. The variables were found to be the same between the files except where noted in the table.

No Project Scenario	Existing Conditions and Steady Flow Scenarios
Link to Keno	Link River, Lake Ewauna
Keno to IG	Keno Reach, J. C. Boyle Reservoir, Bypass & Full Flow Reach, Copco Reservoir, Iron Gate Reservoir
IG to Turwar	Klamath River from Iron Gate Dam to Turwar

Table 6. River Reach comparisons for RMA2\RMA11

		Link River same for all scenarios	Keno Reach same for all scenarios	Bypass and Peaking Reach same for all scenarios except elevation	Iron Gate Dam to Turwar same for all scenarios
Variable Name	Description, units	Value	Value	Value	Value
	Time step, hr	1	1	0.25 (RMA-2) 1.0 (RMA-11)	1
	Space step, m	75	75	75	75 (cal), 150 (application)
	Manning roughness coefficient	0.04	0.04	0.04	0.04
	Turbulence factor, Pascal -sec	100	100	100	100
	Longitudinal diffusion scale factor	0.1	0.1	0.1	0.1
	Slope Factor	0.8	0.9	0.95	0.8
FLEV	Elevation of site m	1192	1192	964 (uses 1192 for EC, 2001, used 948 for No Project - Keno to IG reach)	520
LAT	Latitude of site degrees	41.5	41.5	41.5	41.5
LONG	Longitude of site, degrees	122.45	122.45	122.45	122.45
EVAPA	Evaporative heat flux coefficient a, m hr -1 mb-1	0.000015	0.000015	0.000010	0.000015
EVAPB	Evaporative heat flux coefficient b, m hr -1 mb-1 (m/h) -1	0.000005	0.000010	0.000010	0.000010
EXTINC	Light Extinction coefficient, used when algae is not simulated, 1/m	1.5	1.5	1.5	0.25
ALP0	Chl a to algal biomass conversion factor, phytoplankton, mg Chl_a to mg -A	67	67	67	67
ALP1	Fraction of algal biomass that is nitrogen, phytoplankton, mg -N/mg A	0.072	0.072	0.072	0.072
ALP2	Fraction of algal biomass that is phosphorous, phytoplankton, mg -P/mg A	0.010	0.010	0.010	0.010
LAMB1	Linear algal self-shading coefficient, phytoplankton, 1/m	n/a	n/a	n/a	n/a
LAMB2	Non-linear algal self shading coefficient, phytoplankton, 1/m	n/a	n/a	n/a	n/a
MUMAX	Maximum specific growth rate, phytoplankton, 1/d	0.01	0.01	0.01	0.01
RESP	Local respiration rate of algae, phytoplankton,	0.05	0.05	0.05	0.05

Table 7. RMA2/RM11 parameter values and kinetic coefficients

	1/d				
SIG1	Settling rate of algae, phytoplankton, 1/d	0	0	0	0
	Half saturation coefficient for light,	0.01	0.01	0.01	0.01
KLIGHT	phytoplankton, KJ m-2 s-1	0.01	0.01	0.01	0.01
KNITR	Michaelis-Menton half saturation constant:	0.01	0.01	0.01	0.01
	Michaelis-Menton half saturation constant:				
KPHOS	phosphorous, phytoplankton, mg/l	0.001	0.001	0.001	0.001
PREFN	Preference factor for NH3-N, phytoplankton	0.6	0.6	0.6	0.6
	Chl a to algal biomass conversion factor, bed	50	50	50	50
ABLP0	algae, mg Chl_a to mg -A	50	50	50	50
	Fraction of algal biomass that is nitrogen, bed	0.07	0.07	0.07	0.07
ABLPT	algae, mg/i				
	bed algae, mg/l	0.01	0.01	0.01	0.01
ADLI Z	Linear algal self shading coefficient bed				
LAMB1	algae 1/m	n/a	n/a	n/a	n/a
	Non-linear self shading coefficient, bed algae.				
LAMB2	1/m	n/a	n/a	n/a	n/a
MUMAX	Maximum specific growth rate, bed algae, 1/d	1	1	1	1.5
RESP	Local respiration rate of algae, bed algae, 1/d	0.6	0.6	0.6	0.6
MORT	Mortality, bed algae, 1/d	0	0	0	0.1
	Half-saturation coefficient for nitrogen, bed	0.01	0.01	0.01	0.01
KBNITR	algae, mg/l	0.01	0.01	0.01	0.01
	Half-saturation coefficient for phosphorus, bed	0 002	0.002	0.002	0.002
KBPHOS	algae, mg/l	0.002	0.002	0.002	0.002
	Half-saturation coefficient for light, bed algae,	0.01	0.01	0.01	0.01
KBLIGHT	KJ m-2 s-1	0.01	0.01		0.01
PBREFN	Preference factor for NH3-N, bed algae	0.75	0.75	0.75	0.75
BEI1	Rate constant: biological oxidation NH3-N, 1/d	0.3	0.3	0.3	0.3
BE12	Rate constant: biological oxidation NO2-N, 1/d	0.5	0.5	0.5	0.5
BE13	Rate constant: hydrolysis Org N to NH3-N, 1/d	0.3	0.3	0.3	0.3
BETA	Rate constant: transformation Org P to P-D,	0.3	0.3	0.3	0.3
DE14	First order nitrification inhibition coefficient				
KNINH	mg -1	n/a	n/a	n/a	n/a
	Rate O2 production per unit of algal				
ALP3	photosynthesis, phytoplankton, mg -O/mg-A	1.6	1.6	1.6	1.6
	Rate O2 uptake per unit of algae respired.	4.0	4.0	4.0	4.0
ALP4	phytoplankton, mg-O/mg-A	1.6	1.6	1.6	1.6
	Rate O2 production per unit of algal	1.6	1.6	1.6	1.6
ABLP3	photosynthesis, bed algae, mg -O/mg-A	1.0	1.0	1.0	1.0

ABLP4	Rate O2 uptake per unit of algae respired, bed algae, mg -O/mg-A	1.6	1.6	1.6	1.6
ALP5	Rate O2 uptake per unit NH3-N oxidation, mg- O/mg-N	3.43	3.43	3.43	3.43
ALP6	Rate O2 uptake per unit NO2-N oxidation, mg-O/mg-N	1.14	1.14	1.14	1.14
K1	Deoxygenation rate constant: BOD, 1/d	0.3	0.3	0.3	0.3
	Minimum reaeration rate constant (Churchill formula applied), 1/d	3.0	3.0	3.0	3.0
SIG6	BOD settling rate constant, 1/d	0.0	0.0	0.0	0.0
Water					
Column					
THET1	Algal growth rate temperature factor	1.047			
THET2	Algal respiration rate temperature factor	1.047			
THET3	Algal settling rate temperature factor	1.047			
	Organic nitrogen decay rate temperature	1.047			
IHE14	factor				
THET5	Organic nitrogen settling rate temperature factor	1.024			
THET6	Ammonia nitrogen decay rate temperature factor	1.083			
THET7	Ammonia nitrogen benthic sources rate temperature factor	1.074			
THET8	Nitrite nitrogen decay rate temperature factor	1.047			
THET9	Organic phosphorous decay rate temperature factor	1.047			
THET10	Organic phosphorous settling rate temperature factor	1.024			
THET11	Orthophosphate benthic sources rate temperature factor	1.074			
THET12	BOD decay rate temperature factor	1.047			
THET13	BOD settling rate temperature factor	1.024			
THET14	DO benthic demand rate temperature factor	1.000			
THET15	DO reaeration rate temperature factor	1.024			
Bed					
BTHET1	Bed algae growth rate temperature factor	1.047			
BTHET2	Bed algae respiration rate temperature factor	1.047			
BTHET3	Bed algae settling rate temperature factor	1			
BTHET4	Bed organic nitrogen decay rate temperature factor	1			

BTHET5	Bed organic nitrogen settling rate temperature factor	1		
BTHET6	Bed ammonia nitrogen decay rate temperature factor	1		
BTHET7	Bed ammonia nitrogen benthic sources rate temperature factor	1		
BTHET8	Bed nitrite decay	1		
BTHET9	Bed phosphorous nitrogen decay rate temperature factor	1		
BTHET12	Bed BOD decay rate temperature factor	n/a		

Appendix E: Water Quality Characteristics between RMA 11 and CE-QUAL-W2

Link River was modeled using RMA11 for water quality and the output was used to develop the input to the CE-QUAL-W2 model for Lake Ewauna to Keno Dam. Model output from RMA 11 was compared with CE-QUAL-W2 input by calculating total nitrogen, phosphorus, and organic carbon and other constituents directly translated between the two models.

Table 8 below lists the RMA 11 model water quality constituents output in the left column and the CE-QUAL-W2 model water quality constituents input to the model in the right column. All stoichiometric equivalent coefficients used in the analysis were obtained from the W2 control file for the Lake Ewauna model.

RMA11 output	CE-QUAL-W2 input
Arbitrary Non-Conservative	TDS
BOD	Tracer
DO	Coliform
Organic-N	Inorganic SS
NH3	PO ₄
NO ₂	NH ₃
NO ₃	NO ₃
Organic-P	FE
PO ₄	LDOM
Algae	RDOM
ISS assumed zero	CBOD
	Algae
	DO
	TIC
	ALK

Table 8: Water quality constituents simulated by RMA11 and CE-QUAL-W2

Figure 7 shows a plot comparing the total nitrogen calculated from the RMA11 Link River model output compared with the total nitrogen calculated from the CE-QUAL-W2 (W2) model input. The total nitrogen from the RMA11 output was calculated as:

$$TotalN, RMA11 = ORGN + NH_3 + NO_3 + NO_2$$

Where all constituents are provided as model output. The total nitrogen for the W2 model input was calculated:

$$TotalN, W2 = LDOM\delta_{NLDOM} + 1.85*BOD5\delta_{NBODu} + NH_3 + NO_3 + NO_2 + Algae\delta_{Nalgae} + NH_3 + NO_3 + NO_2 + Algae\delta_{Nalgae} + NH_3 + NO_3$$

Where 1.85 is the ratio of BODu to BOD5, δ_{NLDOM} is the stoichiometric equivalent between labile dissolved organic matter and nitrogen (0.08), δ_{NBODu} is the stoichiometric equivalent between ultimate

BOD and nitrogen (0.06) and δ_{Nalgae} is stoichiometric equivalent between algae biomass and nitrogen (0.08). The third line in Figure 7 considers the W2 model input for total nitrogen minus the contribution from the labile dissolved organic matter.

Figure 8 shows a plot comparing the total phosphorus calculated from the RMA11 model output and the W2 model input. The total phosphorus was calculated from the RMA11 model output using the equation:

$$TotalP, RMA11 = ORGP + PO_4$$

Where all constituents are provided as model output. The total phosphorus for the W2 model input was calculated:

$$TotalN, W2 = LDOM\delta_{PLDOM} + 1.85 * BOD5\delta_{PBODu} + PO_4 + Algae\delta_{Palgae}$$

Where 1.85 is the ratio of BODu to BOD5, δ_{PLDOM} is the stoichiometric equivalent between labile dissolved organic matter and phosphorus (0.005), δ_{PBODu} is the stoichiometric equivalent between ultimate BOD and phosphorus (0.004) and δ_{Palgae} is stoichiometric equivalent between algae biomass and phosphorus (0.005). The third line in Figure 8 considers the W2 model input for total phosphorus minus the contribution from the labile dissolved organic matter.

Figure 9 shows a plot comparing the total organic carbon calculated from the RMA11 model output and the W2 model input. The total organic carbon was calculated from the RMA11 model output four ways: the BOD model output is used as BOD5 concentrations, the BOD model output is used as BOD5 concentrations, the BOD model output is used as BOD4 concentrations, the organic nitrogen, and the organic phosphorus.

When the BOD model output was assumed to be BOD5 the following equation was used:

$$TotalOrganicC, RMA11 = Algae \delta_{Calgae} + 1.85 * BOD5 \delta_{CBODu}$$

When the BOD model output was assumed to be BODu the following equation was used:

$$TotalOrganicC, RMA11 = Algae \delta_{Calgae} + BODu \delta_{CBODu}$$

Where 1.85 is the ratio of BODu to BOD5, δ_{Calgae} is the stoichiometric equivalent between algae biomass and carbon (0.45) and δ_{CBODu} is stoichiometric equivalent between ultimate BOD and carbon (0.32). The total organic carbon was also calculated using the organic nitrogen and organic phosphorus:

$$TotalOrganicC, RMA11 = \left(\frac{\text{ORGN}}{\delta_{\text{NOM}}}\right) \delta_{COM}$$
$$TotalOrganicC, RMA11 = \left(\frac{\text{ORGP}}{\delta_{\text{POM}}}\right) \delta_{COM}$$

Where δ_{COM} is stoichiometric equivalent between organic matter and carbon (0.45), δ_{NOM} is stoichiometric equivalent between organic matter and nitrogen (0.08), and δ_{POM} is the stoichiometric equivalent between organic matter and phosphorus (0.005). The total organic carbon was calculated from the W2 model input file using the equation:

$$TotalOrganicC, W2 = LDOM\delta_{CLDOM} + 1.85 * BOD5\delta_{CBODu} + Algae\delta_{Calgae}$$

Where 1.85 is the ratio of BODu to BOD5, δ_{CLDOM} is the stoichiometric equivalent between labile dissolved organic matter and carbon (0.45), δ_{CBODu} is the stoichiometric equivalent between ultimate BOD and carbon (0.32), and δ_{Calgae} is the stoichiometric equivalent between algae and carbon (0.45). Figure 9 also shows a line plotted which considers the W2 model input without the labile dissolved organic matter.

Figure 10 shows a plot comparing the total BODu calculated from the RMA11 model output and the W2 model input. Similar to the total organic carbon the RMA11 BOD model output could be interpreted as BOD5 or BODu so the total BODu was calculated in two ways:

When the BOD model output was assumed to be BOD5 the following equation was used:

$$TotalBODu, RMA11 = Algae \delta_{Oalgae} + 1.85 * BOD5$$

When the BOD model output was assumed to be BODu the following equation was used:

$$TotalBODu, RMA11 = Algae \delta_{Oalgae} + BODu$$

Where 1.85 is the ratio of BODu to BOD5 and δ_{Oalgae} is the stoichiometric equivalent between algae biomass and dissolved oxygen (1.4). The total BODu from the W2 model input file was calculated by using the equation:

$$TotalBODu, W2 = LDOM\delta_{OLDOM} + 1.85 * BOD5 + Algae\delta_{Oalgae}$$

Where δ_{Oalgae} is the stoichiometric equivalent between algae biomass and dissolved oxygen (1.4), δ_{OLDOM} is the stoichiometric equivalent between labile dissolved organic matter and dissolved oxygen (1.4) and 1.85 is the ratio of BODu to BOD5.

Figure 11 shows a plot comparing the BOD output from the RMA11 model and the BOD input to the W2 model. The figure shows there are large differences between the BOD values between the models. Figure 12 shows the algae biomass concentration output from RMA11 and the input concentration to W2. This figure indicates the values are the same between the two models. Figure 13 shows the dissolved oxygen concentration from the RMA11 model output and the W2 model input and shows they are the same between the two models.

Figure 14 shows the ammonia concentration from the RMA11 model output and the W2 model input and indicates they are the same between the two models. Figure 15 shows the nitrate and nitrite concentration from the RMA11 model output and the W2 model input and indicates they are the same
between the two models. Figure 16 shows the phosphate concentration from the RMA11 model output and the W2 model input and indicates they are the same between the two models.

Figure 7: Total Nitrogen for Link River model output and Lake Ewauna model input

Figure 8: Total Phosphorus for Link River model output and Lake Ewauna model input

Figure 9: Total Organic Carbon for Link River model output and Lake Ewauna model input

Figure 10: Total Ultimate Biochemical Oxygen Demand for Link River model output and Lake Ewauna model input

Figure 11: BOD5 for Link River model output and Lake Ewauna model input

Figure 12: Algae concentration for Link River model output and Lake Ewauna model input

Figure 13: Dissolved oxygen concentration for Link River model output and Lake Ewauna model input

Figure 14: Ammonia for Link River model output and Lake Ewauna model input

Figure 15: Nitrate and nitrite concentration for Link River model output and Lake Ewauna model input

Figure 16: Phosphate for Link River model output and Lake Ewauna model input

Appendix F: Alternatives Analysis: Impact of Withdrawal Elevation on Iron Gate and Copco Reservoirs

Iron Gate Reservoir: Examination of withdrawal elevation effects

The Existing Conditions, 2000, Iron Gate model (DZ = 2.5 m) was used to examine the effect of variations in the penstock and hatchery withdrawal elevation. The base case consists of outflow at the penstock (elevation ~701 m) and small hatchery flow (1.4 m³/s) at elevation ~687 m. There is additional spillway overflow until roughly May. This overflow was retained in the other two scenarios examined where the outtake structure flows were summed and applied to the lowest existing outlet at 687 m and to a hypothetical outlet at 670 m.

Figure 17 shows a summary of withdrawal flows for Iron Gate for 2000. Figure 18 and Figure 19 show temperature profiles at a segment near the Iron Gate dam illustrating the temperature impacts of the different outlet levels at JD 221.5 and JD 271.5, respectively. Figure 20 and Figure 21 show dissolved oxygen profiles at a segment near the Iron Gate dam illustrating the temperature impacts of the different outlet levels at JD 221.5 and JD 221.5 and JD 221.5 and JD 271.5, respectively. Figure 22 shows the temperature of the mixed withdrawals from Iron Gate for the 3 different outlet level configurations. Figure 23 shows the dissolved oxygen of the outlet to Iron Gate reservoir with the lower outlet levels in Iron Gate and the lower levels in Copco Reservoir.

The results from this analysis show that:

- downstream temperatures were much lower with the lower outlet. This is unusual since often the volume of cool water is limited. In discussions with Mike Deas, the model set-up using a very large sediment heating (cooling) coefficient coupled with a cool sediment temperature, artificially created too much cooling of the water in the hypolimnion. Once this model artifact is corrected, we do not expect the apparent temperature benefit to be as great as shown in Figure 22.
- dissolved oxygen conditions were lower with the lower outlet. While this may be true in the short term, if the problem with sediment oxygen demand is resolved (not necessarily an easy issue to fix), the oxygen levels could rise. It would be appropriate to re-run this simulation with different values of SOD for both Copco and Iron Gate reservoirs.

Figure 17. Withdrawal flows at Iron Gate dam.

Figure 18. Temperature profiles in Iron Gate for JD 221.5 at segment 27 comparing different outlet elevations.

Figure 19. Temperature profiles in Iron Gate for JD 271.5 at segment 27 comparing different outlet elevations.

Figure 20. Dissolved oxygen profiles in Iron Gate for JD 221.5 at segment 27 comparing different outlet elevations.

Figure 21. Dissolved oxygen profiles in Iron Gate for JD 271.5 at segment 27 comparing different outlet elevations.

Figure 22. Temperature of mixed outlet water from Iron Gate reservoir using different outlet levels.

Figure 23. Impact on dissolved oxygen below Iron Gate reservoirs with lower outlet levels at both Copco and Iron Gate.

Copco Reservoir: Examination of withdrawal elevation effects

The Existing Conditions, 2000, Copco Reservoir model was used to examine the effects of varying the withdrawal elevation. The existing withdrawals occur at 2 elevations: ~787 m and 790 m. These flows were added together and placed at roughly 2 m above the grid bottom at an elevation of 767 m, replacing the existing outflows. Figure 24 and Figure 25 show comparisons of vertical profiles of temperature and dissolved oxygen, respectively, near the dam for Julian Day 211.5. The outlet temperature from the dam as a function of time is shown in Figure 26.

Figure 24. temperature profile at segment 21 of Copco Reservoir comparing the base simulation with a lower outlet level configuration on JD221.5.

Figure 25. Dissolved oxygen profile at segment 21 of Copco Reservoir comparing the base simulation with a lower outlet level configuration on JD221.5.

Figure 26. Temperatures released from Copco Reservoir during 2000 for the lowered outlet configuration.