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Abstract: 
We evaluated whether wildfire smoke can cool river water temperatures by attenuating solar 
radiation and air temperature in the Salmon River, a temperate, Mediterranean ecosystem in 
Northern California. Previous studies of the thermal effects of wildfires on rivers have focused on 
either the effect of the heat of combustion on water temperatures during a fire, or the effect of 
riparian vegetation losses on post-fire water temperatures. We know of no studies of the effects of 
wildfire smoke on water temperatures of nearby river systems.  
 
We assembled daily data on wildfires, smoke, weather, river discharge, and river temperatures for 
a 19 year period (1997-2015). Wildfire smoke is difficult to quantify due to high spatial and 
temporal variability, but we successfully used a newly available daily high-resolution (1-km) 
dataset of aerosol optical thickness (AOT) derived from satellite imagery to represent smoke 
density. Solar radiation data from Salmon River stations have data quality issues, so we conducted 
our evaluation of the effects of smoke on solar radiation using data from the U.S. Climate 
Reference Network station in Redding, which showed that on the smokiest days at that station, 
solar radiation was reduced to less than 50% of clear-sky potential. We used linear mixed-effects 
models to evaluate the effect of wildfire smoke and other variables on daily mean and maximum 
Salmon River water temperatures in the months June through September in years with major 
wildfires: 2006, 2008, and 2012-2015. In the best-fitting regression models, air temperature ranks 
as the strongest predictor, followed by AOT and then discharge. AOT had a greater effect on daily 
maximum temperatures than on daily mean temperatures. For example, an AOT value of 1700 
(nearly the highest three-day average observed) is predicted to decrease maximum water 
temperature by 1.6°C but decreases mean water temperature by only 0.8°C. Our preliminary 
results confirm that wildfire smoke reduces solar radiation and water temperatures, but our 
methods almost certainly underestimate the magnitude of the cooling effect of smoke on water 
temperatures because air temperatures can also be cooled by smoke and thus is a synergistic effect 
attributed to air temperature in our models. For example, June 2008 was both the smokiest period 
of entire study and had the coolest observed stream temperature deviations (up to 4 °C lower than 
average), yet our model predicted temperatures only 1 °C lower than average. Smoke effects on 
river temperatures appear to be particularly strong when atmospheric high pressure strengthened 
inversions trap smoke in river canyons for multi-day periods. This smoke-induced river cooling 
likely benefits salmonids and other cold-water adapted species during otherwise clear-sky hotter 
summer temperature periods. 
 
This analysis is a proof of concept to explore methods for analysis and provide an interim 
deliverable to fulfill contractual obligations. In an upcoming second phase of the project, we will 
refine our methods using alternative models and datasets, replicate the analysis at many additional 
sites within the Klamath Basin, and write a manuscript for submission to a peer-reviewed journal. 
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temperatures in the Salmon River, potentially benefiting cold-water fishes? A preliminary 
analysis. Prepared for the Klamath Tribal Water Quality Consortium by Riverbend Sciences with 
assistance from the U.S. Fish and Wildlife Service Arcata Office and the U.S. Forest Service 
Pacific Southwest Research Station. 27p.   



Preliminary analysis of wildfire smoke effects on Salmon River water temperatures               2 
 

Introduction 
Temperature is a fundamental regulator of river ecosystems due to the high thermal conductance 
of water (Beitinger & Fitzpatrick, 1979) and because many aquatic animals are ectothermic, such 
as fishes, amphibians, and invertebrates (Beschta et al., 1987; Gillooly et al., 2002; Neuheimer & 
Taggart, 2007).  
 
We evaluated whether wildfire smoke can reduce river water temperatures during the season of 
peak temperatures within the Salmon River of northern California, a temperate, Mediterranean 
watershed. While wildfire is a distinctly terrestrial phenomenon, fires can substantially affect 
aquatic ecosystems (Minshall et al., 1989; Gresswell, 1999; Rieman et al., 2012). Wildfires can 
alter hydrology, sediment dynamics, woody debris, and food webs (Rieman, Gresswell & Rinne, 
2012). Wildfires can also impair water quality, including short-term pulses of heavy metals in 
storm runoff following high-severity fires (Smith et al., 2011; Robinson, 2013, 2014). Several 
studies have explored the effects of wildfire on lotic water temperatures. Most of these 
assessments have focused on the effect of the heat of combustion on water temperatures during a 
fire and the effect of the loss of riparian vegetation on post-fire water temperatures (Hitt, 2003; 
Dunham et al., 2007; Isaak et al., 2009; Mahlum et al., 2011; Beakes et al., 2014). In contrast, to 
our knowledge, there are no published studies of the effects of wildfire smoke on the water 
temperatures of nearby streams and rivers, potentially due to the challenges of sampling during 
wildfires and the unpredictable and ephemeral nature of wildfires. One regional study found that 
wildfire smoke inversion in river canyons affected fire behavior and reduced severity (Estes et al. 
2017). However, indirect evidence suggests that wildfire smoke has the potential to cool river 
water temperatures. Wildfire smoke particles absorb and scatter incoming solar radiation 
(Robock, 1988, 1991; Stone et al., 2011), reducing the amount of solar radiation that reaches the 
Earth’s surface (Yu et al. 2016), and can consequently reduce air temperatures (Robock, 1988, 
1991; Grell et al., 2011; Stone et al., 2011). Mahlum et al. (2011) found that despite reductions 
in riparian canopy, stream temperatures did not increase during an Idaho fire and speculated that 
smoke may have reduced solar radiation. Because solar radiation and air temperature are 
important drivers of stream and river water temperatures (Beschta et al., 1987; Johnson, 2004; 
Caissie, 2006), we propose that wildfire smoke can reduce river water temperatures via 
reflectance and absorption of solar radiation and associated reductions in air temperature. The 
phenomenon is an understudied aspect of wildland fire-fisheries-riverine research.  
 
Specifically, we examined whether wildfire smoke can cool river water temperatures and 
evaluated the magnitude of the effect of smoke on water temperatures relative to other variables 
known to influence lotic water temperatures. To address these questions we assembled data on 
water temperature, wildfire smoke, weather, and river discharge from a 19 year period (1997-
2015) in a large watershed in Northern California. If wildfire smoke does reduce lotic water 
temperatures, this phenomenon may suggest that historical pre-suppression fire regimes with 
more frequent return intervals may have attenuated maximum summer water temperatures in 
some watersheds, potentially benefiting salmonids and other cold water-adapted species. 
 
This analysis is a proof of concept to explore methods for analysis and provide an interim 
deliverable to fulfill contractual obligations. In an upcoming second phase of the project, we will 
replicate the analysis at many additional sites within the Klamath Basin and write a manuscript 
for submission to a peer-reviewed journal. 
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Study Area 
We conducted our analysis in the Salmon River, located in Siskiyou County, California, USA 
(Figure 1). The watershed is sparsely populated with only about 250 people residing within the 
751 mi2 watershed, 98.7% of which is managed by the U.S. Forest Service (Elder et al. 2002). 
The Salmon River was identified as a high priority Key Watershed in the Northwest Forest Plan 
and it contains some of the best anadromous fisheries habitat in the entire Klamath River basin.  
Elevations range from 500 feet to 9000 feet (Elder et al. 2002). Much of the watershed is steep, 
mountainous terrain. Precipitation ranges from less than 40 inches along the South Fork to over 
80 inches in upper Wooley Creek (Elder et al. 2002). The Salmon River watershed is located 
within the Klamath Mountains physiographic province. Approximately 81% of the watershed is 
covered in conifer forest, with 9% in hardwood forests (Elder et al. 2002). 
 
We focused our analysis on the Salmon River sub-basin for three reasons. First, the forests of the 
Klamath-Siskiyou Mountains are fire-prone ecosystems that experience fires of a variety of 
sizes, severities, and frequencies (Taylor & Skinner, 1998, 2003; Halofsky et al., 2011, Estes et 
al. 2017). In addition to lightning ignitions, Native Americans traditionally used fire to manage 
natural resources in the basin (Lake, 2007, 2013). Like many forested ecosystems in the Western 
USA, the Klamath-Siskiyou Mountains have been altered by fire suppression and logging, 
generally resulting in less-frequent fires (Taylor & Skinner, 1998, 2003). Second, anecdotal 
observations in the basin suggested that river temperatures are reduced during periods of heavy 
smoke from summer wildfires, stimulating interest by natural resource agencies, Native 
American tribes, and others responsible for managing Pacific salmon populations within the 
basin (Lake 2009, SRRC 2014, Karuk Tribe 2014). Third, like many watersheds in northern 
California, the Salmon River has been substantially impacted by human activities, including 
logging, mining, and road building (NCRWQCB 2005). Naturally high water temperatures in 
parts of the basin have been exacerbated by post-American settlement human modifications to 
the landscape, resulting in negative impacts to salmon populations. The river is listed as impaired 
by high water temperatures under the federal Clean Water Act, and the State of California has 
developed a Total Maximum Daily Load (TMDL) for water temperature (NCRWQCB 2005). 
 
 
Methods 
We confined all data and analyses to June 1 through September 30 of each year because this is 
the season when water temperatures are typically the highest and most likely to be stressful to 
cold-water adapted species in the region and when wildfires are most likely to be actively 
burning and producing smoke. 
 
Water Temperature Data 
We assembled water temperature records for the Salmon River at Somes Bar near the confluence 
with the Klamath River (Figure 1) collected between 1997 and 2015. These temperature data 
were collected by the U.S. Forest Service. Water temperatures were measured using digital data 
loggers and standard protocols (Dunham et al., 2005).Temperature monitoring did not always 
encompass the entire June 1 to September 30 period. If the start and end dates of monitoring fell 
between June 1 and September 30, we removed the start and end dates when less than 75% of the 
day was sampled. Because of the long record, the type of logger used and the measurement 
frequency often changed through time. Measurement frequency ranged from 30 min to 60 min. 
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Figure 1. Map of Salmon River sub-basin. Figure copied from NCRWQCB (2005). 
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We calculated daily means, minimums, and maximums from the raw water temperature data. All 
temperature time series were visually examined and compared with nearby concurrent 
temperature time series (when available) to identify suspicious measurements. Suspicious 
measurements were examined further and removed if determined to be erroneous.  
 
Instead of using the observed temperatures as our response variables in the analyses of wildfire 
smoke effects on water temperatures, we converted daily mean and maximum water 
temperatures to deviations from long term averages. We did this for two reasons. First, we 
wanted to remove the seasonal pattern that water temperatures often exhibit that is not fully 
captured by variation in air temperature and other meteorological variables (Benyahya et al., 
2007). Second, because wildfires and wildfire smoke were not evenly distributed throughout the 
summer season (see results), we did not want to confound effects of smoke with otherwise 
normal seasonal variation in water temperatures. For each year, we calculated the long-term 
average of daily mean and maximum temperatures for each calendar day, excluding data from 
the current year from the calculation. Because the numbers of years in our time series of water 
temperatures were modest, we wanted to ensure we were not fitting noise in our calculations of 
long-term averages. Thus, we fit a locally weighted second-degree polynomial regression to the 
daily long-term averages for each year as a function of calendar day. The regression used 20% of 
the data in fitting each point. For each year we subtracted the fitted long-term daily average 
means and maximums from the observed daily means and maximums. These daily mean and 
maximum water temperature deviations were the values we used for analysis. 
 
Wildfire Smoke Data 
We used imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) 
instruments on board the National Aeronautics and Space Administration’s (NASA) Terra and 
Aqua satellites to identify when wildfire smoke was present over the lower Klamath Basin 
region. Terra and Aqua have sun-synchronous, near polar orbits. Terra passes over Northern 
California each morning and Aqua each afternoon. Starting with 2004, true-color, geometrically-
corrected MODIS subset images were available for nearly every day at a resolution of 250 m2. 
Imagery were primarily obtained from NASA’s Land, Atmosphere Near real-time Capability for 
Earth Observing Systems website (LANCE)(https://earthdata.nasa.gov/earth-observation-
data/near-real-time). On days when LANCE images were not available, we used similar images 
from Space Science and Engineering Center at the University of Wisconsin-Madison 
(http://ge.ssec.wisc.edu/modis-today).  
 
We examined MODIS imagery of Northern California each day between June 1 and September 
30, 2004-2015 to determine if wildfire smoke was present over any part of the lower Klamath 
Basin. Smoke was typically easy to distinguish in imagery (Figure 2d). To confirm we were not 
misinterpreting the MODIS imagery, we used the spatial database of USA wildfires developed 
by Short (2014, 2015) to identify when fires were burning in or near the lower Klamath Basin. 
This database encompasses 1992 through 2013. For 2014 and 2015, we used the Incident 
Information System (INCI web; http://inciweb.nwcg.gov/) to identify when fires were burning in 
or near the basin. The Short (2014, 2015) database, INCI web, and our personal observations in 
the region all indicated that the MODIS imagery accurately captured the occurrence of wildfire 
smoke in the area of interest. These data sources also indicated that 2006, 2008, and 2012-2015 

https://earthdata.nasa.gov/earth-observation-data/near-real-time
https://earthdata.nasa.gov/earth-observation-data/near-real-time
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were moderately to very smoky summers. Thus, all further analyses were conducted using only 
data from these years. 
 
We also used MODIS data to quantify the distribution and density of wildfire smoke. The 
measure of smoke we used was aerosol optical thickness (AOT), which is commonly used in air 
quality studies and measures the degree to which aerosols prevent the transmission of light by 
absorption or scattering (Duncan et al., 2014; Chu et al., 2016). We used 1 km2 resolution 
gridded AOT data derived from multiple MODIS spectral bands processed according to the 
multi-angle implementation of atmospheric correction algorithm (MAIAC; Lyapustin et al., 
2011a,b, 2012a,b; Di et al., 2016). These AOT data were available from one to three times per 
day, depending on the location of satellite overpasses. While the MAIAC algorithm improves 
upon other AOT retrieval methods, it is unable to retrieve AOT from grid cells where clouds are 
present (Lyapustin et al., 2011a,b, 2012; Superczynski 2017). Thus, the AOT data often 
contained null values for some grid cells (Figure 2a). We used the Fire INventory from NCAR 
(FINN; Wiedinmyer et al., 2011) data set along with a spatial interpolation algorithm to infill 
grid cells with missing AOT values. FINN is a spatially explicit fire occurrence data set derived 
from MODIS thermal anomaly data with a 1 km2 spatial resolution and a daily temporal 
resolution (Wiedinmyer et al., 2011). If an AOT grid cell with a null value contained a FINN fire 
occurrence for the same day, we assigned that grid cell an AOT of 3000 (75% of the maximum 
possible value 4000, selected based on visual exploration). Fire occurrences were used to help 
infill missing AOT values because the MAIAC algorithm can mistake grid cells containing dense 
smoke as clouds (Lyapustin et al., 2012a,b), thus biasing the AOT estimate for a region low. 
Next we used the Close Gaps with Spline module from the System for Automated Geoscientific 
Analyses (SAGA, http://www.saga-gis.org), implemented within R (R Core Team, 2015) using 
the rsaga package (Brenning, 2008), to spatially interpolate the remaining null value grid cells in 
each satellite pass. The Close Gaps with Spline module uses observed values where present and 
fills in gaps by fitting spline functions to the observed data. Advantages of this interpolation 
approach include: 1) it allows interpolated values to be greater than input values, which is 
necessary given that many null values were due to heavy smoke whereas nearby areas of lighter 
smoke were not null, 2) all non-missing data values were retained and not altered by the 
interpolation (Reid et al., 2015). After interpolation, all values greater than 4000 (the maximum 
possible AOT value) were reduced to 4000. The result was a fully infilled gridded AOT data for 
each MODIS pass over Northern California (Figure 2c). We also ran the same interpolation 
algorithm without the FINN data (Figure 2b). For each satellite pass, we visually examined the 
original gridded AOT data with null values, the FINN-interpolated AOT data, the interpolated 
AOT data without the FINN fire occurrences, and the corresponding MODIS true color image. 
We discarded all satellite overpasses when the pass did not fully encompass our focal area. We 
used the FINN-interpolation version for most overpasses, but substituted non-FINN 
interpolations when the FINN interpolation performed poorly (103 out of 2994 overpasses), 
typically due to a combination of smoke and extensive cloud cover. We discarded two 
overpasses for which neither the FINN nor the non-FINN interpolation produced gridded AOT 
data that reasonably matched the associated true color MODIS image. 
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Figure 2. Comparison of (A) original aerosol optical thickness (AOT) before interpolation of 
gaps due to clouds or dense smoke plumes, (B) AOT interpolated to fill gaps, (C) AOT with fire 
inventory (FINN) points inserted and then interpolated, and (D) visible MODIS imagery for an 
example satellite pass (MODIS Terra on July 12, 2008 at 1830 hours, Julian day 194). Black 
lines are boundaries of sub-basins (level 4 hydrologic units) in the Klamath Basin, with the 
Salmon River sub-basin labeled in the upper-left panel. 
 
 
Next, we delineated the watershed upstream from the water temperature monitoring location. We 
then calculated a mean AOT value for the temperature monitoring watershed area on each day 
within our period of interest. If there was more than a single pass for each satellite in each day 
we first calculated the mean AOT value of each satellite within a day, and then calculated the 
mean AOT value of the two satellites for each day. We noticed that on cloudy, smoke-free days, 
the interpolation algorithm often appeared to overestimate AOT values. Thus, for all days when 
we had previously determined there was no smoke present anywhere in the lower Klamath basin 
using the MODIS true color imagery, we assigned those days the lower quartile of all the daily 

(A) Original AOT with gaps (B) Interpolated AOT 

(C) FINN interpolated AOT (D) Visible image 
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AOT values for smoke-free days. Because the Salmon River is situated close to the Pacific Coast 
in a region of low population density, it is reasonable to assume that wildfire smoke is the only 
major producer of aerosols in the region. For example, in Siskiyou County for the year 2012, 
wildfires accounted for 90% of fine (less than 2.5 microns in diameter) particulate matter 
emissions (CARB 2013). Thus, assigning a uniform low AOT value to all smoke-free days 
should not bias our analysis. Finally, for 11 days across the six years that were classified as 
smoky but did not have at least one valid satellite pass (i.e., either there were no data, or we 
discarded all overpasses after visual examination), we assigned those days the mean of the AOT 
values from the day before and the day after. 
 

Weather and River Discharge Data 
In addition to AOT as a measure of smoke density, we assembled river discharge and 
meteorological data to evaluate as potential drivers of water temperature variation and to assess 
the influence of smoke density (AOT) on surface solar radiation. We downloaded mean daily 
discharges for the Salmon River from the U.S. Geological Survey 
(http://waterdata.usgs.gov/nwis) for our period. Precipitation data for the watershed area 
upstream of the temperature monitoring location were acquired from the University of Idaho 
gridded surface meteorological dataset (Abatzoglou, 2013). This dataset provides a variety of 
gridded meteorological variables at a daily temporal resolution and a 4 km spatial resolution for 
the coterminous United States, but we only used precipitation which combines daily data from 
the North American Land Data Assimilation System Phase 2 (NLDAS-2, Mitchell et al., 2004) 
with monthly data from the widely used Parameter-Elevation Regressions on Independent Slopes 
Model (PRISM) dataset (Daly et al., 2008). We used minimum and maximum daily air 
temperature data from 800 m resolution grids from Topography Weather which are derived from 
a combination of weather station data (including the Remote Automated Weather System 
[RAWS] network which is an important data source in the Klamath Basin), elevation-based 
predictors of temperature, and long-term averages of remotely sensed 1-km land skin 
temperature (Oyler et al., 2014). The lack of spatial and temporal gaps in the gridded 
temperature and precipitation datasets makes them much easier to use than individual weather 
stations, but users should be aware of their limitations (Behnke et al. 2016). For example, the 
Topography Weather dataset has known biases in foggy areas of the California coast (Oyler et 
al., 2014), but our study site is far enough inland that it should not be affected. We calculated 
mean minimum and maximum air temperatures and accumulated precipitation for the watershed 
across each day using the USGS geo data portal (https://cida.usgs.gov/gdp/). Subsequently, we 
calculated mean daily air temperatures from the minimum and maximum air temperatures. 
 
Solar Radiation Data 
The solar radiation data from the RAWS stations have some data quality issues1 that make it 
difficult to extract a clean, reliable time series. Therefore, we used the Redding, California 
station of the U.S. Climate Reference Network (USCRN), which has extremely high data quality 
data, to quantify the effect of wildfire smoke on solar radiation in Northern California. Hourly 
solar radiation data were available starting in 2003. For each day we calculated the mean solar 
radiation (W/m2) between 09:00 and 17:00. For each calendar day, we identified the maximum 

                                                           
1Data quality issues included apparently erroneous spikes, shifts in calibration (i.e., 
differences in unobstructed insolation among years), and data gaps. 
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value of mean solar radiation across 2003 – 2015. We assumed this maximum value represented 
completely clear sky conditions (i.e., no clouds or smoke). For the six moderate to heavy smoke 
years, we than calculated the ratio of the observed mean solar radiation on each day to the 
maximum solar radiation value for the same calendar day. The resulting values represent the 
observed solar radiation as a ratio of the expected solar radiation under totally clear sky 
conditions for the same day of the year. Using the process described above in the Wildfire smoke 
section, we also calculated mean daily AOT values for a 10 km – radius circle around the 
Redding USCRN station for the six years. These solar radiation data were not used in the water 
temperature analysis, but rather only used for evaluating the effect of smoke on solar radiation. 
 
Solar Radiation Analysis 
To evaluate the effect of wildfire smoke on solar radiation, we regressed the Redding AOT data 
against the Redding solar radiation data (observed radiation as a fraction of clear radiation) for 
each June-October day in our six-year study period.  
 
Water Temperature Analysis 
We used linear regression to evaluate the effect of wildfire smoke (daily mean AOT) on daily 
ratios of observed solar radiation to expected solar radiation given clear-sky conditions at the 
Redding USCRN station. Prior to performing the regression, we excluded all cloudy days as 
determined by examining MODIS true color imagery to allow us to isolate the effects of smoke. 
If imagery from either satellite contained clouds over or near the USCRN station, we dropped 
that day from the analysis. While these data constitute a time series, we did not incorporate any 
temporal correlation structure in the regression. In the absence of external forcing (e.g., smoke, 
clouds), daily solar radiation varies in a predictable manner and there should not be any lagged 
effects, precluding the need to account for the temporal structure of these data. 
 
We used linear mixed-effects models fit via maximum likelihood to evaluate the effect of 
wildfire smoke and other variables on daily mean and maximum water temperature deviations. 
Models were fit separately for the two response variables. A random intercept of year was 
included in the models because water temperatures can vary overall year to year. Within each 
year we incorporated a first-order autoregressive correlation structure to account for the temporal 
nature of the data and the strong thermal inertia of water. We first fit a full model that included 
wildfire smoke (AOT), air temperature, precipitation, river discharge, and an interaction between 
air temperature and river discharge as explanatory variables. Specifically, we used three day 
trailing averages of AOT, air temperature, precipitation, and daily values of river discharge. The 
interaction term was included because we expected that the effect of air temperature would 
increase as discharge decreased (Webb et al., 2003). If any of the explanatory variables had a P 
value > 0.05, we dropped the variable with the largest P value, refit the model, and then 
compared the two models with a likelihood ratio test using the same criterion (P > 0.05). This 
backwards-selection process was repeated until all remaining variables in the model had a P 
value ≤ 0.05. All analyses were performed using the R software for statistical computing (R Core 
Team, 2015). The linear mixed-effects models were implemented using the nlme package 
(Pinheiro et al., 2017). 
  



Preliminary analysis of wildfire smoke effects on Salmon River water temperatures               10 
 

Results 
 
Effect of Wildfire Smoke on Solar Radiation 
There was a significant relationship between AOT and solar radiation measured at the USCRN 
station near Redding on cloud-free days in 2006, 2008, and 2012-2015 (r2 = 0.74, p < 0.001; β = 
- 0.0001571) (Figure 3). On the single smokiest day, solar radiation was reduced to less the 50% 
of clear-sky potential, while on moderate and heavy smoke days (i.e., AOT>500) solar radiation 
was reduced to 60-95% of clear-sky potential.   

 

 

Figure 3. Remotely sensed wildfire smoke (mean aerosol optical thickness, AOT) vs. solar 
radiation measured at the U.S. Climate Reference Network station near Redding on cloud-free 
days in 2006, 2008, and 2012-2015. Solid line is regression line and dotted lines are 95% 
confidence intervals for the prediction of new solar radiation values. r2 = coefficient of 
determination, with the value of 0.74 indicating that AOT explains approximately 74% of the 
variance in solar radiation; p-value = probability that solar radiation is not associated with 
changes in AOT, with the low p-value indicating a very high probability that the two variables 
are related; and β = regression slope (change in radiation per unit change in AOT). 
 
 

r2 = 0.74 
p < 0.001 
β = - 0.0001571 
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Effect of Wildfire Smoke on River Temperatures 
Scatterplots of the deviation of maximum water temperature and predictor variables indicates 
that (Figure 4a) water temperatures tend to be cooler as smoke increases and tend to be warmer 
as air temperatures increase. Water temperatures also are cooler when precipitation and 
discharge are high, although the relationships are weaker and only apparent at high values. The 
same plot of the deviation of mean water temperature and predictor variables shows similar 
relationships (Figure 4b).  

In the best-fitting regression models, air temperature ranks as the strongest predictor, followed 
by AOT and then discharge (Table 1). Precipitation was only significant in the mean temperature 
model (Table 1). The coefficient (i.e., change in water temperature per unit change in the 
variable) for AOT was nearly twice as high for the daily maximum model (0.000934 °C/AOT) as 
the daily mean model (0.000479 °C/AOT) (Table 1). For example, an AOT value of 1700 (nearly 
the highest three-day average observed) is predicted to decrease maximum water temperature by 
1.6°C but decreases mean water temperature by only 0.8°C. 

The regression models predict a lower range (i.e., deviations closer to zero) of maximum and 
mean temperatures than was actually observed, with high values underestimated and low values 
overestimated (Figures 5, 6, and 7). 

As a simple alternate method for evaluating of the effect of smoke, within each year we 
calculated the mean water temp deviation for days with a three-day mean AOT < 100 (clear or 
very low smoke) and for days with a three-day mean AOT >= 500 (at least moderate smoky). 
Excluding the two years with only a few days of clear or very low smoke (2008) or at least 
moderate smoke (2012), the moderately smoky days were on average 1.37 to 3 °C cooler than the 
clear or very low smoke days (Table 2). 
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Table 1. Comparison of parameter estimates for models to predict deviation of daily maximum 
and mean water temperatures. Variables are listed in order of importance (i.e., absolute value of t 
statistic). Coefficient = change in water temperature per unit change in the variable; Standard 
Error = standard error of coefficient (i.e., uncertainty in estimate of coefficient); p-value = 
probability that the coefficient is equal to zero (i.e., no effect), with lower p-values indicating 
greater degree of statistical significance; t-value = coefficient divided by standard error. The 
greater the absolute value (i.e., how far it is from zero in either a positive or negative direction) 
of the t-value, the less uncertain in the coefficient and the greater the influence of the variable on 
the predicted water temperatures. 

Model Variable Coefficient 
Standard 

Error 
Degrees 
Freedom t-value p-value 

Daily maximum temperature, with autocorrelation and random effect for year 

 
Intercept -2.88 0.56 577 -5.18 <0.001 

 
Air temperature 3-day avg.  0.180 0.016 577 11.46 <0.001 

 
AOT 3-day avg. -0.000934 0.000157 577 -5.95 <0.001 

 Discharge daily -0.000470 0.000196 577 -2.39  0.017 

 
Precipitation 3-day avg. -0.486 0.223 577 -2.18  0.030 

       
Daily mean temperature, with autocorrelation and random effect for year 

 Intercept -3.11 0.54 578 -5.80 <0.001 
 Air temperature 3-day avg. 0.190 0.010 578 18.59 <0.001 
 AOT 3-day avg. -0.000479 0.000104 578 -4.62 <0.001 
 Discharge daily -0.000408 0.000123 578 -3.32  0.001 
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Figure 4. Relationships between four predictor variables (remotely sensed wildfire smoke [mean aerosol optical thickness, AOT], air temperature, 
precipitation, and discharge) and (A) deviation of maximum water temperature and (B) deviation of mean water temperature.  Discharge is daily 
values while AOT, air temperature, and precipitation are three day trailing averages.  
 

(A) Deviation of Maximum Water Temperature  (B) Deviation of Mean Water Temperature  
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Figure 5. Modeled vs. observed deviations of (A) maximum daily water temperature, and (B) 
mean daily water temperature. The solid line is the Y=X identity line. 
 
 

 

Table 2. Mean water temp deviation for days with a three-day mean AOT < 100 (clear or very 
low smoke) and for days with a three-day mean AOT >= 500 (at least moderately smoky). See 
below.  

Year <100 >=500 Diff 
2006  -0.21 -1.58 -1.37 
2008  -0.40* -2.05  -1.65* 
2012 -0.36   1.13*   1.49* 
2013  0.66 -1.26 -1.92 
2014  2.37  0.78 -1.59 
2015 

 
 2.81 

 
 -0.19 
 

-3.00 
 

*Note: 2012 only had two days with >= 500 AOT and 2008 only had four days with AOT < 100, so the 
comparison is less reliable for those years.  

(A) Deviation of Maximum Water Temperature  (B) Deviation of Mean Water Temperature 

Observed 

Fi
tte

d 
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Figure 6. Daily time series for each year showing AOT and deviation of maximum water 
temperature. Blue points are observed water temps, black points are fitted (modeled) water 
temps, and the gray line is the three-day trailing AOT average for the basin. 
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Figure 7. Daily time series for each year showing AOT and deviation of mean water temperature. 
Blue points are observed water temps, black points are fitted (modeled) water temps, and the 
gray line is the three-day trailing AOT average for the basin. 
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Discussion 
 
Our results confirm that wildfire smoke reduces solar radiation and river water temperatures. 
Smoke may be a particularly important during droughts when streams are more prone to heating. 
Given that wildfires are expected to increase as the climate warms (Westerling et al. 2008, 2011; 
Gergel et al. 2017), smoke may be a mechanism for climate change resiliency. Prescribed fire 
and managed wildfire could be valuable tools for managing stream temperatures in coldwater 
fish habitat. A reduced emphasis on fire suppression and return towards a more natural fire 
regime with more frequent return intervals should provide benefits to salmonids and other cold 
water-adapted species. We recognize the significant challenges and risks of allowing fire to 
return to the landscape, but our results suggest that fire provides an additional potential benefit 
that has not yet received appropriate recognition in the scientific literature even though it is well 
known to local people within our study area (see Bisson et al., 2003,O’Laughlin, 2005). 
 
Similar to results from many previous studies (Mohseni et al., 1998; Mayer, 2012; Luce et al., 
2014), we found a strong correlation between air temperature and water temperature; however, 
this correlation does not imply causation (Johnson, 2003; Caissie, 2006). Air temperature and 
water temperature are highly correlated because both respond to the same temporal patterns in 
solar heating (Johnson, 2004). Incoming solar radiation is the most important term in stream 
energy budgets (Johnson, 2003). In contrast, convection of heat from air to water is much less 
important process (Johnson, 2004). Previous research on the Klamath River in summers 2004 
and 2005 found that adult salmon migration was triggered by a 2°C reduction in river water 
temperature preceded by reductions in solar radiation and air temperature during large-scale 
weather fronts with clouds (Strange, 2010). 
 
Our methods almost certainly underestimate the magnitude of the effect of smoke on water 
temperatures. For example, June 2008 was both the smokiest period of entire study and had the 
coolest observed temperature deviations (up to 4 °C lower than average), yet our model predicted 
temperatures only 1 °C lower than average (Figures 5 and 6). Air temperature was the strongest 
predictor of water temperature in our regression model (Table 1), but air temperatures are also 
cooled by the smoke (Turco 1990). We experimented with ways to statistically account for the 
effect of smoke on air temperature but have not yet been successful due to the multitude of 
factors that affect air temperature (e.g., day length, atmospheric circulation patterns, clouds, etc.). 
We also experimented with using remote-sensed solar radiation (which primarily detects clouds 
not smoke) as a predictor variable in place of air temperatures, but the resulting predictions 
poorly fit observed water temperatures. Estimates of the cooling effect of wildfire smoke on air 
temperature in the literature include observed 2-5 °C cooling of daytime air temps in 2010 in 
Colorado (Stone et al. 2011), modeled reductions of surface air temperatures in Alaska in 2004 
by °2 C (Grell et al., 2011), difference between forecasted and observed daytime air temperatures 
of 1.5 to 7 °C in Canada during 1981 and 1982, Siberia in 1987, and Yellowstone National Park 
in 1988 (Robock, 1991), and daytime cooling of 5°C beneath a smoke plume over the 
Northeastern U.S. (Westphal and Toon, 1991). Dense smoke from fires in British Columbia 
resulted in temperatures in Washington D.C. being 2-6 °C cooler than forecast over a 4-day 
period in 1950 (Wexler, 1950). The most extreme example was in September 1987 at Happy 
Camp along the Klamath River when a persistent strong smoke inversion resulted in air 
temperatures 20 °C cooler than normal (Robock, 1988). 
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In our analysis, we use statistical regression models. An alternative approach would be 
deterministic models which simulate the underlying physics of heat flux between a stream and its 
environment (Caissie, 2006; Benyahya et al., 2007). Deterministic models are well suited to 
isolate the effect of a single parameter (i.e., smoke); however, such models are more time 
consuming to implement and require additional input parameters such as water depth and wind 
speed which are often unavailable. A new emerging method is a hybrid of the two which 
combines an equation based on physical principles with stochastic calibration of parameters and 
relies solely on air temperature and discharge as inputs (Piccolroaz  et al. 2015; Toffolon and 
Piccolroaz, 2016), but unfortunately this would not allow us to quantify the effect of smoke. 
 
Relative to air temperature and smoke, we found only a relatively weak correlation between 
water temperature and discharge (Figure 4, Table 1). In contrast, in a separate in-progress 
analysis of Salmon River temperature data (not shown here) which analyzes data at a monthly 
time scale rather than the daily time scale we use here, discharge explains nearly as much of the 
inter-annual variation in mean daily maximum August water temperature as air temperature 
does. These results indicate the benefits of analyzing data at multiple scales using multiple 
analytical approaches. 
 
We found that the smoke effect on daily maximum temperatures was approximately twice the 
smoke effect on daily mean temperatures (Table 1). Daily means are influenced by both daily 
maxima and minima, so our result conform to previous studies that found that smoke affected 
daily maximum air temperatures much more than daily minimum temperatures (Robock, 1988; 
Robock, 1991; Stone et al., 2011). Maximum river water temperatures may be more important 
than mean temperatures as critical thresholds for chronic and acute stress for cold-water adaptive 
species (see Sullivan et al., 2000; Strange 2010).  
 
We were able to successfully use a newly available MODIS MAIAC dataset of aerosol optical 
thickness to represent wildfire smoke. Other potential datasets for quantifying smoke include the 
standard 3 km or 10 km MODIS AOT products (Remer et al., 2013), new high-resolution 
algorithms for processing MODIS data such as SARA (Bilal et al., 2013, 2014) which has not 
yet been applied in North America, or aerosol products derived from other satellites such VIIRS 
(Visible Infrared Imaging Radiometer Suite) which launched in 2011 (Jackson et al., 2013), 
GOES Aerosol/Smoke Product (GASP) which has a 30-minute temporal resolution but low 
spatial resolution (12 x 12 km)(Prados, et al. 2007), or Advanced Very High Resolution 
Radiometer (AVHHR) which has a 40-year record which can be processed with an updated 
algorithm (Hsu et al., 2016). With the exception of the new Enterprise Processing System 
algorithm for VIIRS (Laszlo and Liu, 2016; Zhang et al., 2016) which will be available soon, all 
of these data sources have similar, or more severe, issues with clouds causing missing values as 
the MAIAC AOT.  
 
In addition to using different AOT datasets, it would also be worth experimenting with 
alternative methods for filling gaps in the AOT data, such as by combining AOT with other 
datasets using more advanced methods such as geographically weighted regression (GWR; Gan 
et al., 2017; Lassman et al., 2017), geographically and temporally weighted regression (GTWR; 
Guo et al., 2017), regression kriging (Hengl, 2009; Sun et al., 2012; Meng, 2014), spatio-
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temporal regression-kriging (Hengl et al., 2012; Gräler et al. 2016), or inverse probability 
weights (IPW; Lee et al. 2016). Since smoke often occurs as inversions where smoke is more 
dense along canyon bottoms than ridgetops, local (i.e., moving window) regression kriging of 
AOT using elevation as the predictor variable might improve upon the spline interpolation 
method that we used, yet still be relatively simple to implement in R using either the rsaga and 
gstat packages. The gstat package can also perform spatio-temporal regression-kriging which 
could incorporate data from adjacent days (Gräler et al. 2016).  
 
This analysis is a proof of concept to explore methods for analysis and provide an interim 
deliverable to fulfill contractual obligations. In an upcoming second phase of the project, we will 
refine our methods using alternative models and datasets, replicate the analysis at many 
additional sites within the Klamath Basin, and write a manuscript for submission to a peer-
reviewed journal. 
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